H. Thornburg, Dilip Swaminathan, T. Ingalls, R. Leistikow
{"title":"Joint Segmentation and Temporal Structure Inference for Partially-Observed Event Sequences","authors":"H. Thornburg, Dilip Swaminathan, T. Ingalls, R. Leistikow","doi":"10.1109/MMSP.2006.285265","DOIUrl":null,"url":null,"abstract":"Many events of interest in human activity-based multimedia applications exhibit a high degree of temporal structure. This structure generates expectancies regarding the occurrence and location of subsequent events. In the context of switching state-space models, we develop a general Bayesian framework for representing temporal expectancies and fusing them with raw sense-data to improve both event segmentation and temporal structure identification. Furthermore, we develop a new cognitive model for event anticipation which adapts to incoming sense-data in real time. Comparative advantages of the proposed framework are realized in controlled experiments involving partially-observed, quasi-periodic event streams","PeriodicalId":267577,"journal":{"name":"2006 IEEE Workshop on Multimedia Signal Processing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2006.285265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Many events of interest in human activity-based multimedia applications exhibit a high degree of temporal structure. This structure generates expectancies regarding the occurrence and location of subsequent events. In the context of switching state-space models, we develop a general Bayesian framework for representing temporal expectancies and fusing them with raw sense-data to improve both event segmentation and temporal structure identification. Furthermore, we develop a new cognitive model for event anticipation which adapts to incoming sense-data in real time. Comparative advantages of the proposed framework are realized in controlled experiments involving partially-observed, quasi-periodic event streams