Joint Segmentation and Temporal Structure Inference for Partially-Observed Event Sequences

H. Thornburg, Dilip Swaminathan, T. Ingalls, R. Leistikow
{"title":"Joint Segmentation and Temporal Structure Inference for Partially-Observed Event Sequences","authors":"H. Thornburg, Dilip Swaminathan, T. Ingalls, R. Leistikow","doi":"10.1109/MMSP.2006.285265","DOIUrl":null,"url":null,"abstract":"Many events of interest in human activity-based multimedia applications exhibit a high degree of temporal structure. This structure generates expectancies regarding the occurrence and location of subsequent events. In the context of switching state-space models, we develop a general Bayesian framework for representing temporal expectancies and fusing them with raw sense-data to improve both event segmentation and temporal structure identification. Furthermore, we develop a new cognitive model for event anticipation which adapts to incoming sense-data in real time. Comparative advantages of the proposed framework are realized in controlled experiments involving partially-observed, quasi-periodic event streams","PeriodicalId":267577,"journal":{"name":"2006 IEEE Workshop on Multimedia Signal Processing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2006.285265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Many events of interest in human activity-based multimedia applications exhibit a high degree of temporal structure. This structure generates expectancies regarding the occurrence and location of subsequent events. In the context of switching state-space models, we develop a general Bayesian framework for representing temporal expectancies and fusing them with raw sense-data to improve both event segmentation and temporal structure identification. Furthermore, we develop a new cognitive model for event anticipation which adapts to incoming sense-data in real time. Comparative advantages of the proposed framework are realized in controlled experiments involving partially-observed, quasi-periodic event streams
部分观测事件序列的联合分割与时间结构推断
在基于人类活动的多媒体应用程序中,许多感兴趣的事件都表现出高度的时间结构。此结构生成关于后续事件的发生和位置的期望。在切换状态空间模型的背景下,我们开发了一个通用的贝叶斯框架来表示时间期望,并将它们与原始感知数据融合,以改进事件分割和时间结构识别。此外,我们开发了一种新的事件预测认知模型,该模型可以实时适应传入的感觉数据。在涉及部分观测的准周期事件流的控制实验中实现了所提出框架的相对优势
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信