Nonlinear complex principal component analysis and its applications

Sanjay S. P. Rattan, W. W. Hsieh, Columbia Vancouver, B. Ruessink
{"title":"Nonlinear complex principal component analysis and its applications","authors":"Sanjay S. P. Rattan, W. W. Hsieh, Columbia Vancouver, B. Ruessink","doi":"10.1109/IJCNN.2005.1556122","DOIUrl":null,"url":null,"abstract":"Complex principal component analysis (CPCA) is a linear multivariate technique commonly applied to complex variables or 2D vector fields such as winds or currents. A new nonlinear CPCA (NLCPCA) method has been developed via complex-valued multi-layer perceptron neural networks. NLCPCA is applied to the tropical Pacific wind field to study the interannual variability. Compared to the CPCA mode 1, the NLCPCA mode 1 is found to explain more variance and reveal the asymmetry in the wind anomalies between warm (El Nino) and cool (La Nina) states. NLCPCA can also be used to nonlinearly generalize Hilbert PCA (where real data is complexified prior to performing CPCA). An example is provided from the nearshore bathymetry at Egmond, Netherlands, where sand bars propagate offshore, and unlike the CPCA mode 1, the NLCPCA mode 1 detects asymmetry between the bars and the troughs.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Complex principal component analysis (CPCA) is a linear multivariate technique commonly applied to complex variables or 2D vector fields such as winds or currents. A new nonlinear CPCA (NLCPCA) method has been developed via complex-valued multi-layer perceptron neural networks. NLCPCA is applied to the tropical Pacific wind field to study the interannual variability. Compared to the CPCA mode 1, the NLCPCA mode 1 is found to explain more variance and reveal the asymmetry in the wind anomalies between warm (El Nino) and cool (La Nina) states. NLCPCA can also be used to nonlinearly generalize Hilbert PCA (where real data is complexified prior to performing CPCA). An example is provided from the nearshore bathymetry at Egmond, Netherlands, where sand bars propagate offshore, and unlike the CPCA mode 1, the NLCPCA mode 1 detects asymmetry between the bars and the troughs.
非线性复主成分分析及其应用
复主成分分析(CPCA)是一种线性多元分析技术,通常应用于复杂变量或二维矢量场,如风或流。利用复值多层感知器神经网络,提出了一种新的非线性CPCA (NLCPCA)方法。应用NLCPCA对热带太平洋风场进行年际变化研究。与CPCA模态1相比,NLCPCA模态1解释了更多的变异,揭示了暖态(厄尔尼诺)和冷态(拉尼娜)风异常的不对称性。NLCPCA也可以用于Hilbert PCA的非线性推广(其中实际数据在执行CPCA之前被复杂化)。荷兰Egmond近岸测深提供了一个例子,沙洲在海上传播,与CPCA模式1不同,NLCPCA模式1检测沙洲和槽之间的不对称性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信