A Performance Analysis of Deep Neural Network Models on an Edge Tensor Processing Unit

Christian DeLozier, Forte Rooney, Jennifer Jung, Justin A. Blanco, R. Rakvic, James Shey
{"title":"A Performance Analysis of Deep Neural Network Models on an Edge Tensor Processing Unit","authors":"Christian DeLozier, Forte Rooney, Jennifer Jung, Justin A. Blanco, R. Rakvic, James Shey","doi":"10.1109/ICECET55527.2022.9873024","DOIUrl":null,"url":null,"abstract":"Machine learning on edge devices, embedded systems at the boundaries of computer networks, can provide real-time insight into data-driven problems in many application areas. Further, hardware-based machine learning accelerators, like the Edge tensor processing unit (TPU), offer the promise of saving time and energy on edge computations. By analyzing the performance of machine learning models on edge hardware, we can better understand when and how to apply machine learning on these systems. We analyze the characteristics of models that benefit from the Edge TPU and also demonstrate cases in which a low-powered, mobile CPU will outperform the TPU. We also compare the energy usage of the Edge TPU with a mobile CPU.","PeriodicalId":249012,"journal":{"name":"2022 International Conference on Electrical, Computer and Energy Technologies (ICECET)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electrical, Computer and Energy Technologies (ICECET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECET55527.2022.9873024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning on edge devices, embedded systems at the boundaries of computer networks, can provide real-time insight into data-driven problems in many application areas. Further, hardware-based machine learning accelerators, like the Edge tensor processing unit (TPU), offer the promise of saving time and energy on edge computations. By analyzing the performance of machine learning models on edge hardware, we can better understand when and how to apply machine learning on these systems. We analyze the characteristics of models that benefit from the Edge TPU and also demonstrate cases in which a low-powered, mobile CPU will outperform the TPU. We also compare the energy usage of the Edge TPU with a mobile CPU.
边缘张量处理单元上深度神经网络模型的性能分析
边缘设备上的机器学习,计算机网络边界的嵌入式系统,可以在许多应用领域提供对数据驱动问题的实时洞察。通过分析边缘硬件上机器学习模型的性能,我们可以更好地理解何时以及如何在这些系统上应用机器学习。我们分析了受益于Edge TPU的模型的特征,并演示了低功耗移动CPU将优于TPU的案例。我们还比较了Edge TPU与移动CPU的能源使用情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信