{"title":"A Unified and Semantic Model Approach for Histopathologic Cancer Detection Based on Deep Double Transfer Learning","authors":"U. R, S. B., S. G","doi":"10.1109/ICAECT54875.2022.9807873","DOIUrl":null,"url":null,"abstract":"Accurately predicting the risk of cancer recurrence and metastasis is very important for individual cancer treatment. Currently, doctors usually use a histological grade that pathologists determine by performing a semi-quantitative analysis of the three histopathological and cytological features of hematoxylin-eosin (HE) stained histopathological images. Evaluate the prognosis and treatment options of patients with breast cancer. In order to efficiently and objectively fully utilize the valuable information underlying HE-stained histopathological images, this work has potential as a feature for constructing a classification model of cancer prognosis. So, a calculation method is proposed to extract morphological information. Breast cancer is not a single disease, but it is composed of many different biological entities with different pathological features and clinical significance. With the advent of personalized medicine, pathologists are facing a significant increase in the workload and complexity of digital pathology in cancer diagnosis, and diagnostic protocols need to focus on equal efficiency and accuracy. Computer-aided image processing techniques have been shown to be able to improve the efficiency, accuracy, and consistency of histopathological assessments and provide decision support to ensure diagnostic consistency. First, a method for segmenting tumor lesions based on a pixel-by-pixel deep learning classifier is proposed and a method for segmenting cell nuclei based on marker-driven watersheds. It then subdivides all image objects and extracts a rich set of predefined quantitative morphological object feature. Then a classification model based on these measurements is used to predict disease-free survival in binary patients. Finally, the predictive model is tested in two independent cohorts of breast cancer patients.","PeriodicalId":346658,"journal":{"name":"2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAECT54875.2022.9807873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Accurately predicting the risk of cancer recurrence and metastasis is very important for individual cancer treatment. Currently, doctors usually use a histological grade that pathologists determine by performing a semi-quantitative analysis of the three histopathological and cytological features of hematoxylin-eosin (HE) stained histopathological images. Evaluate the prognosis and treatment options of patients with breast cancer. In order to efficiently and objectively fully utilize the valuable information underlying HE-stained histopathological images, this work has potential as a feature for constructing a classification model of cancer prognosis. So, a calculation method is proposed to extract morphological information. Breast cancer is not a single disease, but it is composed of many different biological entities with different pathological features and clinical significance. With the advent of personalized medicine, pathologists are facing a significant increase in the workload and complexity of digital pathology in cancer diagnosis, and diagnostic protocols need to focus on equal efficiency and accuracy. Computer-aided image processing techniques have been shown to be able to improve the efficiency, accuracy, and consistency of histopathological assessments and provide decision support to ensure diagnostic consistency. First, a method for segmenting tumor lesions based on a pixel-by-pixel deep learning classifier is proposed and a method for segmenting cell nuclei based on marker-driven watersheds. It then subdivides all image objects and extracts a rich set of predefined quantitative morphological object feature. Then a classification model based on these measurements is used to predict disease-free survival in binary patients. Finally, the predictive model is tested in two independent cohorts of breast cancer patients.