Stateless leakage resiliency from NLFSRs

Mostafa M. I. Taha, A. Reyhani-Masoleh, P. Schaumont
{"title":"Stateless leakage resiliency from NLFSRs","authors":"Mostafa M. I. Taha, A. Reyhani-Masoleh, P. Schaumont","doi":"10.1109/HST.2017.7951798","DOIUrl":null,"url":null,"abstract":"Stateless cryptographic functions are required whenever the two communicating parties are not synchronized (have no memory of previous connection). It is widely accepted that these functions can only be efficiently secured against Side-Channel Analysis (SCA) using the regular countermeasures (masking and hiding). On the other hand, leakage resiliency tries to design new cryptographic functions with inherent security against SCA attacks. Generally, there are two methods to design stateless leakage resilient functions: tree structures and key-dependent algorithmic noise. Unfortunately, the first method is computationally intensive, while the current designs under the second method offer low security guarantees. In this paper, we follow the second approach to design a stateless leakage resilient function using non-linear feedback shift registers (NLFSRs). Our results show that the uncertainty on an n-bit key after any SCA attack exceeds n/2 bits, the birthday boundary, and can approach n bits, the brute-force boundary. We validate security of our structure with mathematical models and Monte Carlo simulation at noise-free conditions.","PeriodicalId":190635,"journal":{"name":"2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2017.7951798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Stateless cryptographic functions are required whenever the two communicating parties are not synchronized (have no memory of previous connection). It is widely accepted that these functions can only be efficiently secured against Side-Channel Analysis (SCA) using the regular countermeasures (masking and hiding). On the other hand, leakage resiliency tries to design new cryptographic functions with inherent security against SCA attacks. Generally, there are two methods to design stateless leakage resilient functions: tree structures and key-dependent algorithmic noise. Unfortunately, the first method is computationally intensive, while the current designs under the second method offer low security guarantees. In this paper, we follow the second approach to design a stateless leakage resilient function using non-linear feedback shift registers (NLFSRs). Our results show that the uncertainty on an n-bit key after any SCA attack exceeds n/2 bits, the birthday boundary, and can approach n bits, the brute-force boundary. We validate security of our structure with mathematical models and Monte Carlo simulation at noise-free conditions.
nlfsr的无状态泄漏弹性
只要通信双方不同步(没有以前连接的内存),就需要无状态加密功能。人们普遍认为,这些功能只能使用常规对策(屏蔽和隐藏)来有效地保护免受侧信道分析(SCA)的攻击。另一方面,泄漏弹性试图设计具有固有安全性的新加密功能,以抵御SCA攻击。无状态泄漏弹性函数的设计一般有两种方法:树形结构和依赖键的算法噪声。不幸的是,第一种方法是计算密集型的,而第二种方法下的当前设计提供了低安全性保证。在本文中,我们采用第二种方法使用非线性反馈移位寄存器(NLFSRs)来设计无状态泄漏弹性函数。我们的研究结果表明,任何SCA攻击后n位密钥的不确定性超过n/2位,即生日边界,并且可以接近n位,即暴力破解边界。在无噪声条件下,通过数学模型和蒙特卡罗模拟验证了结构的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信