ADMSv2

Chrysovalantis Anastasiou, Jianfa Lin, Chao He, Yao-Yi Chiang, Cyrus Shahabi
{"title":"ADMSv2","authors":"Chrysovalantis Anastasiou, Jianfa Lin, Chao He, Yao-Yi Chiang, Cyrus Shahabi","doi":"10.1145/3356395.3365544","DOIUrl":null,"url":null,"abstract":"This paper presents ADMSv2, an end-to-end data-driven system that enables real-time and historical data analytics and machine learning tasks over big, streaming, spatiotemporal data. ADMSv2 employs a unified multi-layered architecture that integrates several open-source frameworks to collect, store, manage, and analyze a variety of data sources, including massive traffic sensor data, bus trajectory data, transportation network data, and traffic incidents data. ADMSv2 enables numerous applications in intelligent transportation, urban planning, public policy, and emergency response, all of which are critical for city resilience. Here, we demonstrate three application scenarios running on top of ADMSv2 to showcase the efficiency of its capabilities of query processing on real-world streaming and historical data as well as real-time data analysis using deep learning for traffic forecasting.","PeriodicalId":232191,"journal":{"name":"Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Advances on Resilient and Intelligent Cities","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Advances on Resilient and Intelligent Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3356395.3365544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents ADMSv2, an end-to-end data-driven system that enables real-time and historical data analytics and machine learning tasks over big, streaming, spatiotemporal data. ADMSv2 employs a unified multi-layered architecture that integrates several open-source frameworks to collect, store, manage, and analyze a variety of data sources, including massive traffic sensor data, bus trajectory data, transportation network data, and traffic incidents data. ADMSv2 enables numerous applications in intelligent transportation, urban planning, public policy, and emergency response, all of which are critical for city resilience. Here, we demonstrate three application scenarios running on top of ADMSv2 to showcase the efficiency of its capabilities of query processing on real-world streaming and historical data as well as real-time data analysis using deep learning for traffic forecasting.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信