Self-Interference Signal Path Characterization in Full-Duplex Transceivers Using Built-in Self-Test

Debatrayee Roychowdhury, S. Moallemi, S. Ozev, J. Kitchen
{"title":"Self-Interference Signal Path Characterization in Full-Duplex Transceivers Using Built-in Self-Test","authors":"Debatrayee Roychowdhury, S. Moallemi, S. Ozev, J. Kitchen","doi":"10.1109/RWS45077.2020.9050038","DOIUrl":null,"url":null,"abstract":"This paper proposes a built-in self-test (BIST) method to measure the amplitude and phase shift characteristics of the RF signal path from the transmitter to receiver in a full-duplex system. With this information, the self-interference signal (SI) may be canceled in the RF domain of a full duplex, or simultaneous transmit and receive (STAR) topology. Analysis and simulation results are presented for a 2.4GHz signal with 200MHz bandwidth, and a prototype of the BIST technique has been measured at 800MHz. The average error in phase and gain between the BIST estimated value and actual RF measured value are 0.95% and 1.43%, respectively, which supports the ability to provide 48dB of SI signal cancellation (SIC).","PeriodicalId":184822,"journal":{"name":"2020 IEEE Radio and Wireless Symposium (RWS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS45077.2020.9050038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a built-in self-test (BIST) method to measure the amplitude and phase shift characteristics of the RF signal path from the transmitter to receiver in a full-duplex system. With this information, the self-interference signal (SI) may be canceled in the RF domain of a full duplex, or simultaneous transmit and receive (STAR) topology. Analysis and simulation results are presented for a 2.4GHz signal with 200MHz bandwidth, and a prototype of the BIST technique has been measured at 800MHz. The average error in phase and gain between the BIST estimated value and actual RF measured value are 0.95% and 1.43%, respectively, which supports the ability to provide 48dB of SI signal cancellation (SIC).
全双工收发器的自干扰信号路径特性
本文提出了一种内置自检(BIST)方法来测量全双工系统中射频信号从发射机到接收机的幅值和相移特性。有了这些信息,自干扰信号(SI)可以在全双工或同步发射和接收(STAR)拓扑的RF域中被取消。给出了对带宽为200MHz的2.4GHz信号的分析和仿真结果,并对800MHz的BIST技术原型进行了测量。BIST估计值与实际射频测量值之间的相位和增益平均误差分别为0.95%和1.43%,支持提供48dB的SI信号抵消(SIC)的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信