Fragoulis Nikolaos, Ilias Theodorakopoulos, V. Pothos, E. Vassalos
{"title":"Dynamic Pruning of CNN networks","authors":"Fragoulis Nikolaos, Ilias Theodorakopoulos, V. Pothos, E. Vassalos","doi":"10.1109/IISA.2019.8900711","DOIUrl":null,"url":null,"abstract":"A new, radical CNN dynamic pruning approach is presented in this paper, achieved by a new holistic intervention on both the CNN architecture and the training procedure, which targets to the parsimonious inference by learning to exploit and dynamically remove the redundant capacity of a CNN architecture. Our approach formulates a systematic and data-driven method for developing CNNs that are trained to eventually change size and form in real-time during inference, targeting to the smaller possible computational footprint. Results are provided for the optimal implementation on a few modern, high-end mobile computing platforms indicating a significant speed-up.","PeriodicalId":371385,"journal":{"name":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2019.8900711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
A new, radical CNN dynamic pruning approach is presented in this paper, achieved by a new holistic intervention on both the CNN architecture and the training procedure, which targets to the parsimonious inference by learning to exploit and dynamically remove the redundant capacity of a CNN architecture. Our approach formulates a systematic and data-driven method for developing CNNs that are trained to eventually change size and form in real-time during inference, targeting to the smaller possible computational footprint. Results are provided for the optimal implementation on a few modern, high-end mobile computing platforms indicating a significant speed-up.