A Method to Find Diverse and Manageable Sets of Plausible Yet Severe Financial Scenarios

Craig Friedman, Yangyong Zhang
{"title":"A Method to Find Diverse and Manageable Sets of Plausible Yet Severe Financial Scenarios","authors":"Craig Friedman, Yangyong Zhang","doi":"10.2139/ssrn.2379083","DOIUrl":null,"url":null,"abstract":"We introduce a new practical data-intensive method to generate/discover consistent finite representative collections of plausible yet severe macroprudential, microprudential, book-specific, and individual obligor/instrument scenarios. These scenarios are conditioned on current information (including current macroeconomic, index, industry and instrument/obligor-specific information), and can be conditioned on partial future scenario specifications as well (to accommodate regulatory stress testing requirements, for example, the CCAR requirements for banks, the projections of economists, or senior management). Our method is scalable, is designed to work with limited training data, can incorporate the fat-tailed and mutually dependent behavior that is characteristic of many financial quantities, and can reflect model misspecification risk.","PeriodicalId":106740,"journal":{"name":"ERN: Other Econometrics: Econometric Model Construction","volume":"285 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric Model Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2379083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new practical data-intensive method to generate/discover consistent finite representative collections of plausible yet severe macroprudential, microprudential, book-specific, and individual obligor/instrument scenarios. These scenarios are conditioned on current information (including current macroeconomic, index, industry and instrument/obligor-specific information), and can be conditioned on partial future scenario specifications as well (to accommodate regulatory stress testing requirements, for example, the CCAR requirements for banks, the projections of economists, or senior management). Our method is scalable, is designed to work with limited training data, can incorporate the fat-tailed and mutually dependent behavior that is characteristic of many financial quantities, and can reflect model misspecification risk.
一种方法,以找到多样化和可管理的集似是而非严重的金融情景
我们引入了一种新的实用的数据密集型方法来生成/发现一致的有限代表性集合,这些集合是可信的但严格的宏观审慎、微观审慎、特定于书籍的和个人债务人/工具的场景。这些情景以当前信息(包括当前宏观经济、指数、行业和工具/债务人特定信息)为条件,也可以以部分未来情景规范为条件(以适应监管压力测试要求,例如银行的CCAR要求、经济学家或高级管理层的预测)。我们的方法是可扩展的,设计用于有限的训练数据,可以结合许多金融数量特征的肥尾和相互依赖的行为,并且可以反映模型错误规范的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信