Bosson-Amedenu Senyefia, Joseph Otoo., Eyiah-Bediako Francis
{"title":"Time Series Analysis and Forecasting of Caesarian Section Births in Ghana","authors":"Bosson-Amedenu Senyefia, Joseph Otoo., Eyiah-Bediako Francis","doi":"10.11648/J.BSI.20190401.11","DOIUrl":null,"url":null,"abstract":"Caesarian Section (CS) rates have been known to have geographical varaitions. The purpose of this paper was to determine Ghana’s situation (regional trend) and also to provide a two- year forcast estimates for the ten (10) regions of Ghana. The data was longitudinal and comprised monthly CS records of women from 2008 to 2017. The dataset was divided into training and testing dataset. A total of eighty four (84) months were used as the training dataset and the remaining thirty six (36) months were used as testing dataset. The ARIMA methodology was applied in the analysis. Augmented Dicker-Fuller (ADF), KPSS and the Philips-Perron (PP) unit root tests were employed to test for stationarity of the series plot. KPSS (which is known to give more robust results) and PP test consistently showed that the series was stationary (p < 0.05) for all ten (10) regions, although there were some conflicting results with the ADF test for some regions. Tentative models were formulated for each region and the model with the lowest AIC was selected as the “Best” model fit for respective regions of Ghana. The “best” Model fit for Greater Accra, Central and Eastern regions were respectively SARIMA (2, 0, 0) (0, 1, 1)12, SARIMA (2, 0, 0) (0, 1, 1)12 with a Drift and SARIMA (1, 1, 1) (0, 1, 1)12. Additionally, the best model fit for Northern and Volta regions were SARIMA (3,0,2) (0,1,1)12 with drift and SARIMA (0,1,1) (0,1,1)12. Ashanti, Upper East and Western regions failed the JB test or the normality test for the residuals. Upper West and Brong Ahafo Regions were not suitable for forecasting due failure to depict white noise and ARCH test failure, respectively. The best models fit were used to forecast for 2019 and 2020. The results showed that regional variations of CS exist in Ghana. The study recommended for future studies to apply methods that will allow for forecasting for regions which failed the test under the methods used in this study.","PeriodicalId":219184,"journal":{"name":"Biomedical Statistics and Informatics","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Statistics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.BSI.20190401.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Caesarian Section (CS) rates have been known to have geographical varaitions. The purpose of this paper was to determine Ghana’s situation (regional trend) and also to provide a two- year forcast estimates for the ten (10) regions of Ghana. The data was longitudinal and comprised monthly CS records of women from 2008 to 2017. The dataset was divided into training and testing dataset. A total of eighty four (84) months were used as the training dataset and the remaining thirty six (36) months were used as testing dataset. The ARIMA methodology was applied in the analysis. Augmented Dicker-Fuller (ADF), KPSS and the Philips-Perron (PP) unit root tests were employed to test for stationarity of the series plot. KPSS (which is known to give more robust results) and PP test consistently showed that the series was stationary (p < 0.05) for all ten (10) regions, although there were some conflicting results with the ADF test for some regions. Tentative models were formulated for each region and the model with the lowest AIC was selected as the “Best” model fit for respective regions of Ghana. The “best” Model fit for Greater Accra, Central and Eastern regions were respectively SARIMA (2, 0, 0) (0, 1, 1)12, SARIMA (2, 0, 0) (0, 1, 1)12 with a Drift and SARIMA (1, 1, 1) (0, 1, 1)12. Additionally, the best model fit for Northern and Volta regions were SARIMA (3,0,2) (0,1,1)12 with drift and SARIMA (0,1,1) (0,1,1)12. Ashanti, Upper East and Western regions failed the JB test or the normality test for the residuals. Upper West and Brong Ahafo Regions were not suitable for forecasting due failure to depict white noise and ARCH test failure, respectively. The best models fit were used to forecast for 2019 and 2020. The results showed that regional variations of CS exist in Ghana. The study recommended for future studies to apply methods that will allow for forecasting for regions which failed the test under the methods used in this study.