Detail-Preserving Video-based Virtual Try-On (DPV-VTON)

Raghav S K, Jahnavi A B, Vivek S D, Kirtan T S, P. Agarwal
{"title":"Detail-Preserving Video-based Virtual Try-On (DPV-VTON)","authors":"Raghav S K, Jahnavi A B, Vivek S D, Kirtan T S, P. Agarwal","doi":"10.1145/3599589.3599599","DOIUrl":null,"url":null,"abstract":"Virtual Try-on systems enable the try-on of a desired clothing on a target person image. These systems have led to vast research and have attracted commercial interest. However, the existing techniques are image-based systems limited to using an in-shop target clothing from a pre-defined dataset. To address this, we propose a video-based virtual try-on network DPV-VTON, that simulates the try-on using the target cloth extracted from the fashion videos on a target person image, while preserving the details and the characteristics. The core of the DPV-VTON pipeline is made up of (i) Best Frame Selection (BFS) module that extracts the best frame from the video (ii) Clothing Extraction module (CEM) extracts the target clothing from the selected best frame and generates a binary mask. (iii) A virtual try-on module synthesizes a final virtual try-on. Experiments on the existing benchmark datasets and a curated video dataset demonstrate that DPV-VTON generates photo-realistic and visually promising results. The proposed model obtains the lowest FID, LPIPS and the highest SSIM scores compared to the existing systems.","PeriodicalId":123753,"journal":{"name":"Proceedings of the 2023 8th International Conference on Multimedia and Image Processing","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 8th International Conference on Multimedia and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3599589.3599599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Virtual Try-on systems enable the try-on of a desired clothing on a target person image. These systems have led to vast research and have attracted commercial interest. However, the existing techniques are image-based systems limited to using an in-shop target clothing from a pre-defined dataset. To address this, we propose a video-based virtual try-on network DPV-VTON, that simulates the try-on using the target cloth extracted from the fashion videos on a target person image, while preserving the details and the characteristics. The core of the DPV-VTON pipeline is made up of (i) Best Frame Selection (BFS) module that extracts the best frame from the video (ii) Clothing Extraction module (CEM) extracts the target clothing from the selected best frame and generates a binary mask. (iii) A virtual try-on module synthesizes a final virtual try-on. Experiments on the existing benchmark datasets and a curated video dataset demonstrate that DPV-VTON generates photo-realistic and visually promising results. The proposed model obtains the lowest FID, LPIPS and the highest SSIM scores compared to the existing systems.
基于细节保留视频的虚拟试戴(DPV-VTON)
虚拟试穿系统可以在目标人物图像上试穿所需的衣服。这些系统已经引起了广泛的研究,并吸引了商业兴趣。然而,现有的技术是基于图像的系统,仅限于使用来自预定义数据集的店内目标服装。为了解决这个问题,我们提出了一个基于视频的虚拟试穿网络DPV-VTON,该网络在保留细节和特征的情况下,使用从时尚视频中提取的目标衣服在目标人物图像上模拟试穿。DPV-VTON管道的核心是由(i)最佳帧选择(Best Frame Selection, BFS)模块组成,该模块从视频中提取最佳帧;(ii)服装提取模块(CEM)从选择的最佳帧中提取目标服装并生成二进制掩码。虚拟试戴模块综合了最后的虚拟试戴。在现有的基准数据集和一个精心策划的视频数据集上的实验表明,DPV-VTON可以产生逼真的视觉效果。与现有系统相比,该模型获得了最低的FID, LPIPS和最高的SSIM分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信