Carlos Garay Andrade, Julio Sanz Vera, Fabian Salas, Claudio Pucci, Alejandro Castro, Vlamir Bastos, Ewaldo Schubert, B. Theuveny
{"title":"Enhancement of Production Data in Tight Gas Reservoir Through an Automated Multiphase Measurement Skid for Remote Operation","authors":"Carlos Garay Andrade, Julio Sanz Vera, Fabian Salas, Claudio Pucci, Alejandro Castro, Vlamir Bastos, Ewaldo Schubert, B. Theuveny","doi":"10.2118/208976-ms","DOIUrl":null,"url":null,"abstract":"\n A novel implementation of an economical, self-sustainable and environmentally friendly solution for tight gas field production monitoring in a remote location in Tierra Del Fuego, allows early-stage production measurements necessary in the unconventional reservoir analysis for the field recovery process optimization.\n This innovative solution is based on the development of a portable skid designed for production test measurement in a multi-well pad, that combine a multiport selector valve and a multiphase flow meter, making possible to remotely select a well to measure and transfer flow data in real time. The commands for the well selection and the data transmission can be done via satellite with an encrypted software directly from the Operator's office. A PhotoVoltaic (PV) solar panel was developed to provide a reliable self-sufficient power for the entire system from 100% clean energy.\n Located in Chile's Tierra del Fuego region, the Magallanes Basin comprises two main structural regions: a normal faulted eastern region and a thrust faulted western area. These remote tight gas fields undergoing rapid decline are big challenges to explore, develop and produce economically. They demand a close initial surveillance through timely production tests to acquire representative data, which allows consolidation of a reservoir analysis and development methodologies to optimize ultimate and cost-effective recovery. An innovated approach was successful implemented for production monitoring using the Multiphase Measurement Skid, which provided the required data quality and frequency along with flexibility to perform production test in multiple wells, all remotely controlled from the Operator's office. The entire system is self-sufficient and powered by solar panels designed, which brings sustainability avoiding the use of generator and dealing with fuel logistics making this solution environmentally friendly carbon-free emission.\n Such sustainable and self-sufficient solution to monitor single to multiple wells (up to eight), combines an automated multiport valve system with multiphase measurement technology for remote operations. Its operation is simple and efficient, amd it provides a continuous data stream of well test information to the production and reservoir engineers managing the field.","PeriodicalId":146458,"journal":{"name":"Day 1 Wed, March 16, 2022","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Wed, March 16, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208976-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A novel implementation of an economical, self-sustainable and environmentally friendly solution for tight gas field production monitoring in a remote location in Tierra Del Fuego, allows early-stage production measurements necessary in the unconventional reservoir analysis for the field recovery process optimization.
This innovative solution is based on the development of a portable skid designed for production test measurement in a multi-well pad, that combine a multiport selector valve and a multiphase flow meter, making possible to remotely select a well to measure and transfer flow data in real time. The commands for the well selection and the data transmission can be done via satellite with an encrypted software directly from the Operator's office. A PhotoVoltaic (PV) solar panel was developed to provide a reliable self-sufficient power for the entire system from 100% clean energy.
Located in Chile's Tierra del Fuego region, the Magallanes Basin comprises two main structural regions: a normal faulted eastern region and a thrust faulted western area. These remote tight gas fields undergoing rapid decline are big challenges to explore, develop and produce economically. They demand a close initial surveillance through timely production tests to acquire representative data, which allows consolidation of a reservoir analysis and development methodologies to optimize ultimate and cost-effective recovery. An innovated approach was successful implemented for production monitoring using the Multiphase Measurement Skid, which provided the required data quality and frequency along with flexibility to perform production test in multiple wells, all remotely controlled from the Operator's office. The entire system is self-sufficient and powered by solar panels designed, which brings sustainability avoiding the use of generator and dealing with fuel logistics making this solution environmentally friendly carbon-free emission.
Such sustainable and self-sufficient solution to monitor single to multiple wells (up to eight), combines an automated multiport valve system with multiphase measurement technology for remote operations. Its operation is simple and efficient, amd it provides a continuous data stream of well test information to the production and reservoir engineers managing the field.