ExaRanker: Synthetic Explanations Improve Neural Rankers

Fernando Ferraretto, Thiago Laitz, R. Lotufo, Rodrigo Nogueira
{"title":"ExaRanker: Synthetic Explanations Improve Neural Rankers","authors":"Fernando Ferraretto, Thiago Laitz, R. Lotufo, Rodrigo Nogueira","doi":"10.1145/3539618.3592067","DOIUrl":null,"url":null,"abstract":"Recent work has shown that incorporating explanations into the output generated by large language models (LLMs) can significantly enhance performance on a broad spectrum of reasoning tasks. Our study extends these findings by demonstrating the benefits of explanations for neural rankers. By utilizing LLMs such as GPT-3.5 to enrich retrieval datasets with explanations, we trained a sequence-to-sequence ranking model, dubbed ExaRanker, to generate relevance labels and explanations for query-document pairs. The ExaRanker model, finetuned on a limited number of examples and synthetic explanations, exhibits performance comparable to models finetuned on three times more examples, but without explanations. Moreover, incorporating explanations imposes no additional computational overhead into the reranking step and allows for on-demand explanation generation. The codebase and datasets used in this study will be available at https://github.com/unicamp-dl/ExaRanker","PeriodicalId":425056,"journal":{"name":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539618.3592067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent work has shown that incorporating explanations into the output generated by large language models (LLMs) can significantly enhance performance on a broad spectrum of reasoning tasks. Our study extends these findings by demonstrating the benefits of explanations for neural rankers. By utilizing LLMs such as GPT-3.5 to enrich retrieval datasets with explanations, we trained a sequence-to-sequence ranking model, dubbed ExaRanker, to generate relevance labels and explanations for query-document pairs. The ExaRanker model, finetuned on a limited number of examples and synthetic explanations, exhibits performance comparable to models finetuned on three times more examples, but without explanations. Moreover, incorporating explanations imposes no additional computational overhead into the reranking step and allows for on-demand explanation generation. The codebase and datasets used in this study will be available at https://github.com/unicamp-dl/ExaRanker
ExaRanker:综合解释提高神经排序器
最近的研究表明,将解释合并到大型语言模型(llm)生成的输出中可以显著提高广泛推理任务的性能。我们的研究扩展了这些发现,证明了解释神经排名的好处。通过使用GPT-3.5等llm来丰富检索数据集的解释,我们训练了一个序列到序列排序模型,称为ExaRanker,以生成查询文档对的相关标签和解释。ExaRanker模型在有限数量的示例和综合解释上进行了微调,其性能可与在三倍以上的示例上进行微调的模型相媲美,但没有解释。此外,合并解释不会给重新排序步骤带来额外的计算开销,并允许按需生成解释。本研究中使用的代码库和数据集可在https://github.com/unicamp-dl/ExaRanker上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信