Predição de Congelamento de Marcha por Meio da Detecção de Eventos de Pré-Congelamento

João Pedro A. Amoedo, P. H. N. Gonçalves, R. Albuquerque, E. Santos, Rafael Giusti, Renato C. F. Junior
{"title":"Predição de Congelamento de Marcha por Meio da Detecção de Eventos de Pré-Congelamento","authors":"João Pedro A. Amoedo, P. H. N. Gonçalves, R. Albuquerque, E. Santos, Rafael Giusti, Renato C. F. Junior","doi":"10.5753/sbcas.2023.229854","DOIUrl":null,"url":null,"abstract":"Congelamento de marcha (FOG) é um sinal clínico debilitante comumente observado em pacientes com doença de Parkinson. Utilizando dados normalmente capturados por sensores inerciais, a predição automática do FOG pode ajudar a melhorar a qualidade de vida dos pacientes—e.g., evitando quedas. Dentre as estratégias aplicadas, destaca-se o uso de métodos de aprendizagem de máquina para resolver um problema de classificação em três classes: FOG, Não-FOG e Pré-FOG. A classe Pré-FOG refere-se a segmentos de série temporal imediatamente anterior à ocorrência de um evento de FOG. A expectativa é que instâncias de Pré-FOG apresentem características únicas que permitam identificar aspectos de um episódio iminente de FOG. No entanto, essa classe não é bem definida e nem bem caracterizada na literatura devido à sua natureza transicional. Neste artigo nós analisamos o comportamento da classe Pré-FOG usando dois modelos de aprendizagem de máquina, SVM e a combinação de CNN com LSTM, em dados coletados por acelerômetros e giroscópios. Os resultados mostram que Pré-FOG pode ser detectada, mas com taxas de reconhecimento baixas, indicando a falta de padrões discriminantes da classe Pré-FOG em relação às instâncias de FOG ou de Não-FOG.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Congelamento de marcha (FOG) é um sinal clínico debilitante comumente observado em pacientes com doença de Parkinson. Utilizando dados normalmente capturados por sensores inerciais, a predição automática do FOG pode ajudar a melhorar a qualidade de vida dos pacientes—e.g., evitando quedas. Dentre as estratégias aplicadas, destaca-se o uso de métodos de aprendizagem de máquina para resolver um problema de classificação em três classes: FOG, Não-FOG e Pré-FOG. A classe Pré-FOG refere-se a segmentos de série temporal imediatamente anterior à ocorrência de um evento de FOG. A expectativa é que instâncias de Pré-FOG apresentem características únicas que permitam identificar aspectos de um episódio iminente de FOG. No entanto, essa classe não é bem definida e nem bem caracterizada na literatura devido à sua natureza transicional. Neste artigo nós analisamos o comportamento da classe Pré-FOG usando dois modelos de aprendizagem de máquina, SVM e a combinação de CNN com LSTM, em dados coletados por acelerômetros e giroscópios. Os resultados mostram que Pré-FOG pode ser detectada, mas com taxas de reconhecimento baixas, indicando a falta de padrões discriminantes da classe Pré-FOG em relação às instâncias de FOG ou de Não-FOG.
通过检测预冻结事件预测运行冻结
步态冻结(FOG)是一种使人衰弱的临床症状,常见于帕金森病患者。使用通常由惯性传感器捕获的数据,雾的自动预测可以帮助改善患者的生活质量,例如。,避免跌倒。在应用的策略中,我们强调使用机器学习方法来解决三类分类问题:雾、非雾和预雾。雾前类指的是雾事件发生之前的时间序列片段。预计雾前的实例将具有独特的特征,允许识别即将发生的雾的各个方面。然而,由于它的过渡性质,这类在文献中并没有很好的定义和描述。在本文中,我们使用两种机器学习模型,SVM和CNN与LSTM的结合,在加速度计和陀螺仪收集的数据中分析了雾前类的行为。结果表明,可以检测到雾前,但识别率较低,说明与雾或非雾实例相比,雾前类缺乏鉴别模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信