Patient Journey Visualizer: A Tool for Visualizing Patient Journeys

K. K. Kaushal, S. Kaushik, Abhinav Choudhury, Krish Viswanathan, Balaji Chellappa, Sayee Natarajan, Larry A. Pickett, V. Dutt
{"title":"Patient Journey Visualizer: A Tool for Visualizing Patient Journeys","authors":"K. K. Kaushal, S. Kaushik, Abhinav Choudhury, Krish Viswanathan, Balaji Chellappa, Sayee Natarajan, Larry A. Pickett, V. Dutt","doi":"10.1109/MLDS.2017.19","DOIUrl":null,"url":null,"abstract":"To provide sufficient healthcare to patients, it is important to visualize patient journey(s), i.e., the journey from sickness to recovery. However, current visualization tools do not allow us to imagine patient journeys at both the individual and aggregate levels. In this paper, we aim to understand patient journeys via powerful visualization charts, that help mine patterns in Big-Data relating to patients at both the individual and aggregate levels. We developed a Patient Journey Visualizer (PJV) tool that can help in visualizing patient journeys via Parallel Coordinates, Sankey, and Sunburst charts. Parallel Coordinates assists in visualizing multivariate data concerning patient journeys in PJV at the individual level. Sankey charts help in visualizing the aggregate flow of patients between various phases of patient journeys in PJV. Sunburst charts represent hierarchical relationships between diagnoses, procedures, and prescription medications in PJV. Different visualization charts in PJV were compared across increasing number of data points. Results revealed that the Parallel Coordinates chart took less time to render compared to the Sankey and Sunburst charts when dataset size increased. The main implications of our findings are for improving healthcare by providing useful visualizations of patient journeys.","PeriodicalId":248656,"journal":{"name":"2017 International Conference on Machine Learning and Data Science (MLDS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Machine Learning and Data Science (MLDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLDS.2017.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To provide sufficient healthcare to patients, it is important to visualize patient journey(s), i.e., the journey from sickness to recovery. However, current visualization tools do not allow us to imagine patient journeys at both the individual and aggregate levels. In this paper, we aim to understand patient journeys via powerful visualization charts, that help mine patterns in Big-Data relating to patients at both the individual and aggregate levels. We developed a Patient Journey Visualizer (PJV) tool that can help in visualizing patient journeys via Parallel Coordinates, Sankey, and Sunburst charts. Parallel Coordinates assists in visualizing multivariate data concerning patient journeys in PJV at the individual level. Sankey charts help in visualizing the aggregate flow of patients between various phases of patient journeys in PJV. Sunburst charts represent hierarchical relationships between diagnoses, procedures, and prescription medications in PJV. Different visualization charts in PJV were compared across increasing number of data points. Results revealed that the Parallel Coordinates chart took less time to render compared to the Sankey and Sunburst charts when dataset size increased. The main implications of our findings are for improving healthcare by providing useful visualizations of patient journeys.
病人旅程可视化:一个可视化病人旅程的工具
为了向患者提供足够的医疗保健,重要的是可视化患者的旅程,即从疾病到康复的旅程。然而,目前的可视化工具不允许我们在个人和总体水平上想象病人的旅程。在本文中,我们的目标是通过强大的可视化图表来了解患者的旅程,这有助于在个体和总体层面上挖掘与患者相关的大数据模式。我们开发了一个患者旅程可视化工具(PJV),可以通过平行坐标、Sankey和Sunburst图表帮助可视化患者的旅程。平行坐标有助于在个体水平上可视化PJV患者旅程的多变量数据。桑基图表有助于可视化患者在PJV患者旅程的各个阶段之间的总流量。Sunburst图表示PJV中诊断、程序和处方药之间的层次关系。在越来越多的数据点上比较不同的PJV可视化图表。结果显示,当数据集大小增加时,与Sankey和Sunburst图表相比,Parallel Coordinates图表的渲染时间更短。我们的研究结果的主要含义是通过提供病人旅程的有用可视化来改善医疗保健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信