{"title":"On Operational Semantics of Congruence Relation Defined in Algebraic Language ASL/","authors":"H. Seki, K. Taniguchi, T. Kasami","doi":"10.1142/9789814360128_0004","DOIUrl":null,"url":null,"abstract":"An algebraic specification (or text) specifies a congruence relation on a set of expressions. In algebraic language $ASL/*$ , a pair $(G, AX)$ is called a text, where $G$ is a context-free grammar and $AX$ is a set of axioms. A text $t=(G, AX)$ specifies the set $E_{G}$ of expressions generated by $G$ and the least congruence relation on $E_{G}$ satisfying all the axioms in $AX$ , where ‘congruency’ is defined based on the syntax (phrase structure) of the expressions. In general, for a text $t$ in $ASL/*$ , the condition, (A) $e$ is congruent with $e’$ in $t$ , is not logically equivalent to the condition, (B) $e’$ is obtained from $e$ by rewriting $e$ when the axioms in $t$ are regarded as ‘bidirectional‘ rewrite rules. We present a sufficient condition for a text $t$ under which (A) and (B) are equivalent for any pair of expressions $e$ and $e’$ , which means that the congruence relation specified by $t$ is simply defined operationally.","PeriodicalId":313959,"journal":{"name":"Software Science and Engineering","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789814360128_0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An algebraic specification (or text) specifies a congruence relation on a set of expressions. In algebraic language $ASL/*$ , a pair $(G, AX)$ is called a text, where $G$ is a context-free grammar and $AX$ is a set of axioms. A text $t=(G, AX)$ specifies the set $E_{G}$ of expressions generated by $G$ and the least congruence relation on $E_{G}$ satisfying all the axioms in $AX$ , where ‘congruency’ is defined based on the syntax (phrase structure) of the expressions. In general, for a text $t$ in $ASL/*$ , the condition, (A) $e$ is congruent with $e’$ in $t$ , is not logically equivalent to the condition, (B) $e’$ is obtained from $e$ by rewriting $e$ when the axioms in $t$ are regarded as ‘bidirectional‘ rewrite rules. We present a sufficient condition for a text $t$ under which (A) and (B) are equivalent for any pair of expressions $e$ and $e’$ , which means that the congruence relation specified by $t$ is simply defined operationally.