On Operational Semantics of Congruence Relation Defined in Algebraic Language ASL/

H. Seki, K. Taniguchi, T. Kasami
{"title":"On Operational Semantics of Congruence Relation Defined in Algebraic Language ASL/","authors":"H. Seki, K. Taniguchi, T. Kasami","doi":"10.1142/9789814360128_0004","DOIUrl":null,"url":null,"abstract":"An algebraic specification (or text) specifies a congruence relation on a set of expressions. In algebraic language $ASL/*$ , a pair $(G, AX)$ is called a text, where $G$ is a context-free grammar and $AX$ is a set of axioms. A text $t=(G, AX)$ specifies the set $E_{G}$ of expressions generated by $G$ and the least congruence relation on $E_{G}$ satisfying all the axioms in $AX$ , where ‘congruency’ is defined based on the syntax (phrase structure) of the expressions. In general, for a text $t$ in $ASL/*$ , the condition, (A) $e$ is congruent with $e’$ in $t$ , is not logically equivalent to the condition, (B) $e’$ is obtained from $e$ by rewriting $e$ when the axioms in $t$ are regarded as ‘bidirectional‘ rewrite rules. We present a sufficient condition for a text $t$ under which (A) and (B) are equivalent for any pair of expressions $e$ and $e’$ , which means that the congruence relation specified by $t$ is simply defined operationally.","PeriodicalId":313959,"journal":{"name":"Software Science and Engineering","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789814360128_0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An algebraic specification (or text) specifies a congruence relation on a set of expressions. In algebraic language $ASL/*$ , a pair $(G, AX)$ is called a text, where $G$ is a context-free grammar and $AX$ is a set of axioms. A text $t=(G, AX)$ specifies the set $E_{G}$ of expressions generated by $G$ and the least congruence relation on $E_{G}$ satisfying all the axioms in $AX$ , where ‘congruency’ is defined based on the syntax (phrase structure) of the expressions. In general, for a text $t$ in $ASL/*$ , the condition, (A) $e$ is congruent with $e’$ in $t$ , is not logically equivalent to the condition, (B) $e’$ is obtained from $e$ by rewriting $e$ when the axioms in $t$ are regarded as ‘bidirectional‘ rewrite rules. We present a sufficient condition for a text $t$ under which (A) and (B) are equivalent for any pair of expressions $e$ and $e’$ , which means that the congruence relation specified by $t$ is simply defined operationally.
代数语言ASL/中同余关系的操作语义
代数规范(或文本)指定了一组表达式上的同余关系。在代数语言$ASL/*$中,一对$(G, AX)$称为文本,其中$G$是与上下文无关的语法,$AX$是一组公理。文本$t=(G, AX)$指定由$G$生成的表达式的集合$E_{G}$和$E_{G}$上满足$AX$中所有公理的最小同余关系,其中“同余”是根据表达式的语法(短语结构)来定义的。一般来说,对于$ASL/*$中的文本$t$, (a) $e$与$t$中的$e ' $相等的条件与(B) $e ' $是通过重写$e$从$e$得到的条件在逻辑上是不等价的,当$t$中的公理被视为“双向”重写规则时。本文给出了文本$t$对于任意一对表达式$e$和$e ' $ (a)和(B)等价的一个充分条件,这意味着$t$所指定的同余关系在运算上是简单定义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信