Improved Local Vector Pattern Descriptor for Face Recognition

M. Abdullah, S. Prakash, Kedir Beshir, Alemayehu Kebede Abebe, Habtemarium Hailu Takore
{"title":"Improved Local Vector Pattern Descriptor for Face Recognition","authors":"M. Abdullah, S. Prakash, Kedir Beshir, Alemayehu Kebede Abebe, Habtemarium Hailu Takore","doi":"10.1109/STCR55312.2022.10009318","DOIUrl":null,"url":null,"abstract":"With the rising demands of visual observation systems, vehicle and public recognition at a distance has gained extra notice for the researchers in recent times. Real-world face recognition systems require cautious balancing of two important concerns: Elapse Time, recognition rate. In this paper Improved Local Vector Pattern (ILVP) feature extraction technique and Nearest Neighbor (NN) classification techniques are worked out to improve the recognition rate as well as to enhance the computational time. The Improved Local Vector Pattern (ILVP) computes the values between the adjacent pixels and β reference pixels in various distance D and different direction for every pixel. A micropattern is created with respect to the reference pixels using Comparative Space Transform (CST). CST is used to encode the spatial information of a face image into binary pattern. The binary patterns generated using CST is lower when compared to the number of binary patterns generated using Local Multi Code Pattern (LMCP). ILVP generates 8(8×1) binary patterns for each pixel. These binary patterns are collected by histogram bins. ILVP outperforms the existing LVP for ORL face dataset.","PeriodicalId":338691,"journal":{"name":"2022 Smart Technologies, Communication and Robotics (STCR)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Smart Technologies, Communication and Robotics (STCR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STCR55312.2022.10009318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rising demands of visual observation systems, vehicle and public recognition at a distance has gained extra notice for the researchers in recent times. Real-world face recognition systems require cautious balancing of two important concerns: Elapse Time, recognition rate. In this paper Improved Local Vector Pattern (ILVP) feature extraction technique and Nearest Neighbor (NN) classification techniques are worked out to improve the recognition rate as well as to enhance the computational time. The Improved Local Vector Pattern (ILVP) computes the values between the adjacent pixels and β reference pixels in various distance D and different direction for every pixel. A micropattern is created with respect to the reference pixels using Comparative Space Transform (CST). CST is used to encode the spatial information of a face image into binary pattern. The binary patterns generated using CST is lower when compared to the number of binary patterns generated using Local Multi Code Pattern (LMCP). ILVP generates 8(8×1) binary patterns for each pixel. These binary patterns are collected by histogram bins. ILVP outperforms the existing LVP for ORL face dataset.
改进的局部矢量模式描述符人脸识别
随着人们对视觉观测系统需求的不断提高,车辆和公众的远距离识别受到了研究人员的特别关注。现实世界的人脸识别系统需要谨慎平衡两个重要问题:运行时间,识别率。本文提出了改进的局部向量模式(ILVP)特征提取技术和最近邻(NN)分类技术,以提高识别率并缩短计算时间。改进的局部向量模式(ILVP)计算每个像素在不同距离D和不同方向上相邻像素和β参考像素之间的值。使用比较空间变换(CST)创建相对于参考像素的微图案。利用CST将人脸图像的空间信息编码为二值模式。与使用本地多码模式(LMCP)生成的二进制模式数量相比,使用CST生成的二进制模式数量更少。ILVP为每个像素生成8个(8×1)二进制模式。这些二值模式由直方图箱收集。对于ORL人脸数据集,ILVP优于现有的LVP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信