Balanced Influence Maximization in Attributed Social Network Based on Sampling

Mingkai Lin, Wenzhong Li, Sanglu Lu
{"title":"Balanced Influence Maximization in Attributed Social Network Based on Sampling","authors":"Mingkai Lin, Wenzhong Li, Sanglu Lu","doi":"10.1145/3336191.3371833","DOIUrl":null,"url":null,"abstract":"Influence maximization in social networks is the problem of finding a set of seed nodes in the network that maximizes the spread of influence under certain information prorogation model, which has become an important topic in social network analysis. In this paper, we show that conventional influence maximization algorithms cause uneven spread of influence among different attribute groups in social networks, which could lead to severer bias in public opinion dissemination and viral marketing. We formulate the balanced influence maximization problem to address the trade-off between influence maximization and attribute balance, and propose a sampling based solution to solve the problem efficiently. To avoid full network exploration, we first propose an attribute-based (AB) sampling method to sample attributed social networks with respect to preserving network structural properties and attribute proportion among user groups. Then we propose an attributed-based reverse influence sampling (AB-RIS) algorithm to select seed nodes from the sampled graph. The proposed AB-RIS algorithm runs efficiently with guaranteed accuracy, and achieves the trade-off between influence maximization and attribute balance. Extensive experiments based on four real-world social network datasets show that AB-RIS significantly outperforms the state-of-the-art approaches in balanced influence maximization.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Influence maximization in social networks is the problem of finding a set of seed nodes in the network that maximizes the spread of influence under certain information prorogation model, which has become an important topic in social network analysis. In this paper, we show that conventional influence maximization algorithms cause uneven spread of influence among different attribute groups in social networks, which could lead to severer bias in public opinion dissemination and viral marketing. We formulate the balanced influence maximization problem to address the trade-off between influence maximization and attribute balance, and propose a sampling based solution to solve the problem efficiently. To avoid full network exploration, we first propose an attribute-based (AB) sampling method to sample attributed social networks with respect to preserving network structural properties and attribute proportion among user groups. Then we propose an attributed-based reverse influence sampling (AB-RIS) algorithm to select seed nodes from the sampled graph. The proposed AB-RIS algorithm runs efficiently with guaranteed accuracy, and achieves the trade-off between influence maximization and attribute balance. Extensive experiments based on four real-world social network datasets show that AB-RIS significantly outperforms the state-of-the-art approaches in balanced influence maximization.
基于抽样的属性社会网络平衡影响最大化
社交网络中的影响力最大化问题是在一定的信息延拓模型下,在网络中找到一组影响传播最大化的种子节点,成为社会网络分析中的一个重要课题。在本文中,我们发现传统的影响力最大化算法导致社交网络中不同属性群体的影响力传播不均匀,这可能导致民意传播和病毒式营销的严重偏见。为了解决影响最大化和属性平衡之间的权衡,我们提出了平衡影响最大化问题,并提出了一种基于采样的解决方案来有效地解决问题。为了避免对整个网络进行探索,我们首先提出了一种基于属性(AB)的采样方法来对具有属性的社交网络进行采样,同时保留了网络的结构属性和属性在用户群体中的比例。然后,我们提出了一种基于属性的反向影响采样(AB-RIS)算法,从采样图中选择种子节点。所提出的AB-RIS算法在保证精度的前提下高效运行,实现了影响最大化和属性平衡之间的权衡。基于四个真实社会网络数据集的广泛实验表明,AB-RIS在平衡影响最大化方面显着优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信