Improving Predictions of Long Sequences by Hyperparameter Tuning

K. Koparanov, K. Georgiev, Vasil A. Shterev, D. Minkovska
{"title":"Improving Predictions of Long Sequences by Hyperparameter Tuning","authors":"K. Koparanov, K. Georgiev, Vasil A. Shterev, D. Minkovska","doi":"10.1109/COMSCI55378.2022.9912600","DOIUrl":null,"url":null,"abstract":"The problem of forecasting long sequences is important in many different domains. Proper selection of the hyperparameters when a machine learning approach is applied could make the difference between adequate and inadequate model. Several algorithms for automatic hyperparameters tuning were evaluated and compared with baseline selection. As a result, recommendations have been made. Some of the intuitive assumptions for the baseline model proved to be wrong.","PeriodicalId":399680,"journal":{"name":"2022 10th International Scientific Conference on Computer Science (COMSCI)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Scientific Conference on Computer Science (COMSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSCI55378.2022.9912600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of forecasting long sequences is important in many different domains. Proper selection of the hyperparameters when a machine learning approach is applied could make the difference between adequate and inadequate model. Several algorithms for automatic hyperparameters tuning were evaluated and compared with baseline selection. As a result, recommendations have been made. Some of the intuitive assumptions for the baseline model proved to be wrong.
利用超参数调优改进长序列预测
长序列的预测问题在许多不同的领域都很重要。当应用机器学习方法时,正确选择超参数可以区分适当和不适当的模型。评估了几种自动超参数调优算法,并与基线选择进行了比较。因此,提出了一些建议。对基线模型的一些直观假设被证明是错误的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信