A computational field framework for collaborative task execution in volunteer clouds

Stefano Sebastio, M. Amoretti, Alberto Lluch-Lafuente
{"title":"A computational field framework for collaborative task execution in volunteer clouds","authors":"Stefano Sebastio, M. Amoretti, Alberto Lluch-Lafuente","doi":"10.1145/2593929.2593943","DOIUrl":null,"url":null,"abstract":"The increasing diffusion of cloud technologies offers new opportunities for distributed and collaborative computing. Volunteer clouds are a prominent example, where participants join and leave the platform and collaborate by sharing computational resources. The high complexity, dynamism and unpredictability of such scenarios call for decentralized self-* approaches. We present in this paper a framework for the design and evaluation of self-adaptive collaborative task execution strategies in volunteer clouds. As a byproduct, we propose a novel strategy based on the Ant Colony Optimization paradigm, that we validate through simulation-based statistical analysis over Google cluster data.","PeriodicalId":168314,"journal":{"name":"International Symposium on Software Engineering for Adaptive and Self-Managing Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Software Engineering for Adaptive and Self-Managing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593929.2593943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

The increasing diffusion of cloud technologies offers new opportunities for distributed and collaborative computing. Volunteer clouds are a prominent example, where participants join and leave the platform and collaborate by sharing computational resources. The high complexity, dynamism and unpredictability of such scenarios call for decentralized self-* approaches. We present in this paper a framework for the design and evaluation of self-adaptive collaborative task execution strategies in volunteer clouds. As a byproduct, we propose a novel strategy based on the Ant Colony Optimization paradigm, that we validate through simulation-based statistical analysis over Google cluster data.
志愿云中协同任务执行的计算领域框架
云技术的日益普及为分布式和协作计算提供了新的机会。志愿者云是一个突出的例子,参与者加入和离开平台,并通过共享计算资源进行协作。这种场景的高度复杂性、动态性和不可预测性要求采用分散的自我*方法。本文提出了志愿者云环境下自适应协同任务执行策略的设计与评估框架。作为副产品,我们提出了一种基于蚁群优化范式的新策略,我们通过基于模拟的Google集群数据统计分析来验证该策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信