Space Lower Bounds for Itemset Frequency Sketches

Edo Liberty, M. Mitzenmacher, J. Thaler, Jonathan Ullman
{"title":"Space Lower Bounds for Itemset Frequency Sketches","authors":"Edo Liberty, M. Mitzenmacher, J. Thaler, Jonathan Ullman","doi":"10.1145/2902251.2902278","DOIUrl":null,"url":null,"abstract":"Given a database, computing the fraction of rows that contain a query itemset or determining whether this fraction is above some threshold are fundamental operations in data mining. A uniform sample of rows is a good sketch of the database in the sense that all sufficiently frequent itemsets and their approximate frequencies are recoverable from the sample, and the sketch size is independent of the number of rows in the original database. For many seemingly similar problems there are better sketching algorithms than uniform sampling. In this paper we show that for itemset frequency sketching this is not the case. That is, we prove that there exist classes of databases for which uniform sampling is a space optimal sketch for approximate itemset frequency analysis, up to constant or iterated-logarithmic factors.","PeriodicalId":158471,"journal":{"name":"Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2902251.2902278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Given a database, computing the fraction of rows that contain a query itemset or determining whether this fraction is above some threshold are fundamental operations in data mining. A uniform sample of rows is a good sketch of the database in the sense that all sufficiently frequent itemsets and their approximate frequencies are recoverable from the sample, and the sketch size is independent of the number of rows in the original database. For many seemingly similar problems there are better sketching algorithms than uniform sampling. In this paper we show that for itemset frequency sketching this is not the case. That is, we prove that there exist classes of databases for which uniform sampling is a space optimal sketch for approximate itemset frequency analysis, up to constant or iterated-logarithmic factors.
项目集频率草图的空间下界
给定一个数据库,计算包含查询项集的行比例或确定该比例是否超过某个阈值是数据挖掘中的基本操作。统一的行样本是一个很好的数据库草图,因为所有足够频繁的项目集及其近似频率都可以从样本中恢复,草图的大小与原始数据库中的行数无关。对于许多看似相似的问题,有比均匀采样更好的草图算法。在本文中,我们表明,对于项目集频率草图这不是情况。也就是说,我们证明了存在一类数据库,其中均匀抽样是近似项集频率分析的空间最优草图,直至常数或迭代对数因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信