Edo Liberty, M. Mitzenmacher, J. Thaler, Jonathan Ullman
{"title":"Space Lower Bounds for Itemset Frequency Sketches","authors":"Edo Liberty, M. Mitzenmacher, J. Thaler, Jonathan Ullman","doi":"10.1145/2902251.2902278","DOIUrl":null,"url":null,"abstract":"Given a database, computing the fraction of rows that contain a query itemset or determining whether this fraction is above some threshold are fundamental operations in data mining. A uniform sample of rows is a good sketch of the database in the sense that all sufficiently frequent itemsets and their approximate frequencies are recoverable from the sample, and the sketch size is independent of the number of rows in the original database. For many seemingly similar problems there are better sketching algorithms than uniform sampling. In this paper we show that for itemset frequency sketching this is not the case. That is, we prove that there exist classes of databases for which uniform sampling is a space optimal sketch for approximate itemset frequency analysis, up to constant or iterated-logarithmic factors.","PeriodicalId":158471,"journal":{"name":"Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2902251.2902278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Given a database, computing the fraction of rows that contain a query itemset or determining whether this fraction is above some threshold are fundamental operations in data mining. A uniform sample of rows is a good sketch of the database in the sense that all sufficiently frequent itemsets and their approximate frequencies are recoverable from the sample, and the sketch size is independent of the number of rows in the original database. For many seemingly similar problems there are better sketching algorithms than uniform sampling. In this paper we show that for itemset frequency sketching this is not the case. That is, we prove that there exist classes of databases for which uniform sampling is a space optimal sketch for approximate itemset frequency analysis, up to constant or iterated-logarithmic factors.