Maneuvering target tracking with unknown acceleration using retrospective-cost-based adaptive input and state estimation

Liang Han, Antai Xie, Z. Ren, D. Bernstein
{"title":"Maneuvering target tracking with unknown acceleration using retrospective-cost-based adaptive input and state estimation","authors":"Liang Han, Antai Xie, Z. Ren, D. Bernstein","doi":"10.1109/CHICC.2015.7260422","DOIUrl":null,"url":null,"abstract":"In this paper, we apply retrospective-cost-based adaptive input and state estimation (RCAISE) to maneuvering target tracking. Conventional methods assume that the maneuvering process is a random process. In contrast, RCAISE uses an adaptive input estimator to estimate the unknown maneuvering acceleration. This estimator optimizes the retrospective performance to drive the estimated maneuvering acceleration to approximate the actual maneuvering acceleration. Using the maneuvering target tracking model, a state estimator is constructed to provide the optimal estimate of the state. Numerical simulations illustrate the effectiveness and feasibility of RCAISE with comparison to the conventional methods.","PeriodicalId":421276,"journal":{"name":"2015 34th Chinese Control Conference (CCC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 34th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHICC.2015.7260422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we apply retrospective-cost-based adaptive input and state estimation (RCAISE) to maneuvering target tracking. Conventional methods assume that the maneuvering process is a random process. In contrast, RCAISE uses an adaptive input estimator to estimate the unknown maneuvering acceleration. This estimator optimizes the retrospective performance to drive the estimated maneuvering acceleration to approximate the actual maneuvering acceleration. Using the maneuvering target tracking model, a state estimator is constructed to provide the optimal estimate of the state. Numerical simulations illustrate the effectiveness and feasibility of RCAISE with comparison to the conventional methods.
基于回溯代价的自适应输入和状态估计的未知加速度机动目标跟踪
本文将基于回溯成本的自适应输入与状态估计(RCAISE)应用于机动目标跟踪。传统的方法假设机动过程是一个随机过程。相比之下,RCAISE使用自适应输入估计器来估计未知的机动加速度。该估计器对回溯性能进行优化,使估计的机动加速度近似于实际的机动加速度。利用机动目标跟踪模型,构造状态估计器,对目标进行最优状态估计。数值仿真结果表明了该方法的有效性和可行性,并与传统方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信