Adaptive two-SVM multi-objective cuckoo search algorithm for software defect prediction

Yun Niu, Zeyu Tian, Maoqing Zhang, Xingjuan Cai, Jianwei Li
{"title":"Adaptive two-SVM multi-objective cuckoo search algorithm for software defect prediction","authors":"Yun Niu, Zeyu Tian, Maoqing Zhang, Xingjuan Cai, Jianwei Li","doi":"10.1504/IJCSM.2018.096327","DOIUrl":null,"url":null,"abstract":"Two-support vector machine is a new prediction model for software defect. For this model, one multi-objective oriented cuckoo search is designed to optimise several objects simultaneously to improve the defect accuracy, and the ratio of dataset plays an important role to determine the number of big/small modules. In this paper, we provide one extension for the multi-objective oriented cuckoo search, so that it can also adaptive optimise this ratio. Simulation results show our modification achieves the best performance when compared with two other software defect prediction models.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSM.2018.096327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Two-support vector machine is a new prediction model for software defect. For this model, one multi-objective oriented cuckoo search is designed to optimise several objects simultaneously to improve the defect accuracy, and the ratio of dataset plays an important role to determine the number of big/small modules. In this paper, we provide one extension for the multi-objective oriented cuckoo search, so that it can also adaptive optimise this ratio. Simulation results show our modification achieves the best performance when compared with two other software defect prediction models.
软件缺陷预测的自适应双支持向量机多目标布谷鸟搜索算法
双支持向量机是一种新的软件缺陷预测模型。针对该模型,设计了一种面向多目标的布谷鸟搜索,同时优化多个目标以提高缺陷精度,数据集的比例是决定大/小模块数量的重要因素。在本文中,我们对多目标定向布谷鸟搜索提供了一种扩展,使其也能自适应优化该比率。仿真结果表明,与其他两种软件缺陷预测模型相比,我们的改进模型达到了最好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信