Data Analysis in Moving Windows for Optimizing Barley Net Blotch Prediction

Outi Ruusunen, M. Jalli, L. Jauhiainen, M. Ruusunen, K. Leiviskä
{"title":"Data Analysis in Moving Windows for Optimizing Barley Net Blotch Prediction","authors":"Outi Ruusunen, M. Jalli, L. Jauhiainen, M. Ruusunen, K. Leiviskä","doi":"10.18178/JOAAT.7.2.38-42","DOIUrl":null,"url":null,"abstract":"—In modern agriculture, the pesticides and the need to decrease their use is under discussion. Optimization methods and modelling tools are important research areas in this context. In this paper, data analysis, feature generation and selection in moving windows have been utilized for the evaluation of net blotch risk in barley. Two different datasets: The open data from the Finnish Meteorological Institute and the historical observation of the net blotch severity in different fields in Finland are combined with feature generation techniques. T-test is then applied to select the most statistically suitable features for prediction the net blotch risk from weather measurements. Analysis proceeds in moving data windows to indicate the most informative time period to predict the risk of net blotch during the growing season. Results show that the selection of the proper time instance and the length of data window may enhance strongly the potential performance of prediction methods for risk analysis on plant disease. 1","PeriodicalId":222254,"journal":{"name":"Journal of Advanced Agricultural Technologies","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Agricultural Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/JOAAT.7.2.38-42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

—In modern agriculture, the pesticides and the need to decrease their use is under discussion. Optimization methods and modelling tools are important research areas in this context. In this paper, data analysis, feature generation and selection in moving windows have been utilized for the evaluation of net blotch risk in barley. Two different datasets: The open data from the Finnish Meteorological Institute and the historical observation of the net blotch severity in different fields in Finland are combined with feature generation techniques. T-test is then applied to select the most statistically suitable features for prediction the net blotch risk from weather measurements. Analysis proceeds in moving data windows to indicate the most informative time period to predict the risk of net blotch during the growing season. Results show that the selection of the proper time instance and the length of data window may enhance strongly the potential performance of prediction methods for risk analysis on plant disease. 1
移动窗口数据分析优化大麦网斑预测
在现代农业中,人们正在讨论农药和减少农药使用的必要性。优化方法和建模工具是这方面的重要研究领域。本文采用数据分析、特征生成和移动窗口选择等方法对大麦网斑病风险进行评价。两个不同的数据集:芬兰气象研究所的开放数据和芬兰不同领域的净斑严重程度的历史观测数据结合特征生成技术。然后应用t检验选择统计上最合适的特征来预测天气测量的净斑点风险。在移动数据窗口中进行分析,以指出最具信息量的时间段,以预测生长季节净斑病的风险。结果表明,选择适当的时间实例和数据窗口长度可以大大提高植物病害风险分析预测方法的潜在性能。1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信