End-to-End Video Snapshot Compressive Imaging using Video Transformers

Wael Saideni, F. Courrèges, D. Helbert, J. Cances
{"title":"End-to-End Video Snapshot Compressive Imaging using Video Transformers","authors":"Wael Saideni, F. Courrèges, D. Helbert, J. Cances","doi":"10.1109/IPTA54936.2022.9784128","DOIUrl":null,"url":null,"abstract":"This paper presents a novel reconstruction algorithm for video Snapshot Compressive Imaging (SCI). Inspired by recent research works on Transformers and Self-Attention mechanism in computer vision, we propose the first video SCI reconstruction algorithm built upon Transformers to capture long-range spatio-temporal dependencies enabling the deep learning of feature maps. Our approach is based on a Spatiotempo-ral Convolutional Multi-head Attention (ST-ConvMHA) which enable to exploit the spatial and temporal information of the video scenes instead of using fully-connected attention layers. To evaluate the performances of our approach, we train our algorithm on DAVIS2017 dataset and we test the trained models on six benchmark datasets. The obtained results in terms of PSNR, SSIM and especially reconstruction time prove the ability of using our reconstruction approach for real-time applications. We truly believe that our research will motivate future works for more video reconstruction approaches.","PeriodicalId":381729,"journal":{"name":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA54936.2022.9784128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel reconstruction algorithm for video Snapshot Compressive Imaging (SCI). Inspired by recent research works on Transformers and Self-Attention mechanism in computer vision, we propose the first video SCI reconstruction algorithm built upon Transformers to capture long-range spatio-temporal dependencies enabling the deep learning of feature maps. Our approach is based on a Spatiotempo-ral Convolutional Multi-head Attention (ST-ConvMHA) which enable to exploit the spatial and temporal information of the video scenes instead of using fully-connected attention layers. To evaluate the performances of our approach, we train our algorithm on DAVIS2017 dataset and we test the trained models on six benchmark datasets. The obtained results in terms of PSNR, SSIM and especially reconstruction time prove the ability of using our reconstruction approach for real-time applications. We truly believe that our research will motivate future works for more video reconstruction approaches.
端到端视频快照压缩成像使用视频变压器
提出了一种新的视频快照压缩成像(SCI)重构算法。受最近计算机视觉中变形金刚和自注意机制的研究工作的启发,我们提出了第一个基于变形金刚的视频SCI重建算法,以捕获远程时空依赖关系,实现特征图的深度学习。我们的方法是基于时空卷积多头注意(ST-ConvMHA),它能够利用视频场景的空间和时间信息,而不是使用完全连接的注意层。为了评估我们的方法的性能,我们在DAVIS2017数据集上训练我们的算法,并在六个基准数据集上测试训练好的模型。在PSNR, SSIM,特别是重构时间方面的结果证明了我们的重构方法在实时应用中的能力。我们真的相信我们的研究将激励更多的视频重建方法的未来工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信