The complexity and distribution of hard problems

D. Juedes, J. H. Lutz
{"title":"The complexity and distribution of hard problems","authors":"D. Juedes, J. H. Lutz","doi":"10.1109/SFCS.1993.366869","DOIUrl":null,"url":null,"abstract":"Measure-theoretic aspects of the /spl les//sub m//sup P/-reducibility structure of exponential time complexity classes E=DTIME(2/sup linear/) and E/sub 2/=DTIME(2/sup polynomial/) are investigated. Particular attention is given to the complexity (measured by the size of complexity cores) and distribution (abundance in the sense of measure) of languages that are /spl les//sub m//sup P/-hard for E and other complexity classes. Tight upper and lower bounds on the size of complexity cores of hard languages are derived. The upper bounds say that the /spl les//sub m//sup P/-hard languages for E are unusually simple in, the sense that they have smaller complexity cores than most languages in E. It follows that the /spl les//sub m//sup P/-complete languages for E form a measure 0 subset of E (and similarly in E/sub 2/). This latter fact is seen to be a special case of a more general theorem, namely, that every /spl les//sub m//sup P/-degree (e.g. the degree of all /spl les//sub m//sup P/-complete languages for NP) has measure 0 in E and in E/sub 2/.<<ETX>>","PeriodicalId":253303,"journal":{"name":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1993.366869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

Measure-theoretic aspects of the /spl les//sub m//sup P/-reducibility structure of exponential time complexity classes E=DTIME(2/sup linear/) and E/sub 2/=DTIME(2/sup polynomial/) are investigated. Particular attention is given to the complexity (measured by the size of complexity cores) and distribution (abundance in the sense of measure) of languages that are /spl les//sub m//sup P/-hard for E and other complexity classes. Tight upper and lower bounds on the size of complexity cores of hard languages are derived. The upper bounds say that the /spl les//sub m//sup P/-hard languages for E are unusually simple in, the sense that they have smaller complexity cores than most languages in E. It follows that the /spl les//sub m//sup P/-complete languages for E form a measure 0 subset of E (and similarly in E/sub 2/). This latter fact is seen to be a special case of a more general theorem, namely, that every /spl les//sub m//sup P/-degree (e.g. the degree of all /spl les//sub m//sup P/-complete languages for NP) has measure 0 in E and in E/sub 2/.<>
难题的复杂性和分布
研究了指数时间复杂度类E=DTIME(2/sup线性/)和E/sub 2/=DTIME(2/sup多项式/)的/spl les//sub m//sup P/-可约性结构的测度理论问题。特别注意的是复杂性(通过复杂性核心的大小来衡量)和分布(在测量意义上的丰度),这些语言是/spl //sub //sup / P/-hard,用于E和其他复杂性类。给出了硬语言复杂度核大小的严格上下界。上界表明,E的/spl //sub m//sup P/-hard语言异常简单,因为它们比E中的大多数语言具有更小的复杂性核心。由此可见,E的/spl //sub m//sup P/-complete语言形成了E的度量0子集(在E/sub 2/中也类似)。后一个事实被看作是一个更一般定理的特例,即每一个/spl les//sub m//sup P/-度(例如所有/spl les//sub m//sup P/-完备语言对于NP的度)在E和E/sub 2/.>中都有测度0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信