{"title":"SciCSM","authors":"Gangyi Zhu, Yi Wang, G. Agrawal","doi":"10.1145/2791347.2791361","DOIUrl":null,"url":null,"abstract":"Contrast set mining is a broadly applicable exploratory technique, which identifies interesting differences across contrast groups. The existing algorithms primarily target relational datasets with categorical attributes. There is clearly a need to apply this method to discover interesting patterns across scientific datasets, which feature arrays with numeric values. In this paper, we present a novel algorithm, SciCSM, for efficient contrast set mining over array-based datasets. We define how \"interesting\" contrast sets can be characterized for numeric and array data -- handling the fact that subsets can involve both value-based and/or dimension-based attributes. We extensively use bitmap indices to reduce computational complexity and enable processing of larger-scale data. We demonstrate both high efficiency and effectiveness of our algorithm by using multiple real-life datasets.","PeriodicalId":225179,"journal":{"name":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2791347.2791361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Contrast set mining is a broadly applicable exploratory technique, which identifies interesting differences across contrast groups. The existing algorithms primarily target relational datasets with categorical attributes. There is clearly a need to apply this method to discover interesting patterns across scientific datasets, which feature arrays with numeric values. In this paper, we present a novel algorithm, SciCSM, for efficient contrast set mining over array-based datasets. We define how "interesting" contrast sets can be characterized for numeric and array data -- handling the fact that subsets can involve both value-based and/or dimension-based attributes. We extensively use bitmap indices to reduce computational complexity and enable processing of larger-scale data. We demonstrate both high efficiency and effectiveness of our algorithm by using multiple real-life datasets.