Shallow parsing with Hidden Markov Support Vector Machines

Shixi Fan, Lidan Chen, Xuan Wang, Buzhou Tang
{"title":"Shallow parsing with Hidden Markov Support Vector Machines","authors":"Shixi Fan, Lidan Chen, Xuan Wang, Buzhou Tang","doi":"10.1109/ICMLC.2014.7009716","DOIUrl":null,"url":null,"abstract":"Shallow parsing system, providing natural part syntactic information statement, to meet a lot of language information processing requirements, has received much attention recent years. Hidden Markov Support Vector Machines (HM-SVMs) for sequence labeling offer advantages over both generative models like HMMs and classifying models like SVMs which give labeling result for each positionseparately. We show how to train a HM-SVM model to achieve good performance on the data set of CoNLL2000 share task. The HM-SVMs yields an F-score of 95.51% which is better than any system result of ConLL2000 share task.","PeriodicalId":335296,"journal":{"name":"2014 International Conference on Machine Learning and Cybernetics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2014.7009716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Shallow parsing system, providing natural part syntactic information statement, to meet a lot of language information processing requirements, has received much attention recent years. Hidden Markov Support Vector Machines (HM-SVMs) for sequence labeling offer advantages over both generative models like HMMs and classifying models like SVMs which give labeling result for each positionseparately. We show how to train a HM-SVM model to achieve good performance on the data set of CoNLL2000 share task. The HM-SVMs yields an F-score of 95.51% which is better than any system result of ConLL2000 share task.
隐马尔可夫支持向量机的浅解析
浅解析系统提供自然的局部句法信息表述,以满足多种语言信息处理需求,近年来受到了广泛关注。用于序列标记的隐马尔可夫支持向量机(hmm - svm)比生成模型(hmm)和分类模型(svm)都有优势,后者分别给出每个位置的标记结果。我们展示了如何在CoNLL2000共享任务数据集上训练hmm - svm模型以获得良好的性能。hmm - svm的f值为95.51%,优于ConLL2000共享任务的任何系统结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信