Lossy compression of natural HDR content based on multi-component Transform optimization

Miguel Hernández-Cabronero, Victor Sanchez, F. Aulí-Llinàs, J. Serra-Sagristà
{"title":"Lossy compression of natural HDR content based on multi-component Transform optimization","authors":"Miguel Hernández-Cabronero, Victor Sanchez, F. Aulí-Llinàs, J. Serra-Sagristà","doi":"10.1109/DMIAF.2016.7574894","DOIUrl":null,"url":null,"abstract":"Linear multi-component transforms (MCTs) are commonly employed for enhancing the coding performance for the compression of natural color images. Popular MCTs such as the RGB to Y'CbCr transform are not optimized specifically for any given input image. Data-dependent transforms such as the Karhunen-Loève Transform (KLT) or the Optimal Spectral Transform (OST) optimize some analytical criteria (e.g., the inter-component correlation or mutual information), but do not consider all aspects of the coding system applied to the transformed components. Recently, a framework that produces optimized MCTs dependent on the input image and the subsequent coding system was proposed for 8-bit pathology whole-slide images. This work extends this framework to higher bitdepths and investigate its performance for different types of high-dynamic range (HDR) contents. Experimental results indicate that the optimized MCTs yield average PSNR results 0.17%, 0.47% and 0.63% higher than those of the KLT for raw mosaic images, reconstructed HDR radiance scenes and color graded HDR contents, respectively.","PeriodicalId":404025,"journal":{"name":"2016 Digital Media Industry & Academic Forum (DMIAF)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Digital Media Industry & Academic Forum (DMIAF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMIAF.2016.7574894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Linear multi-component transforms (MCTs) are commonly employed for enhancing the coding performance for the compression of natural color images. Popular MCTs such as the RGB to Y'CbCr transform are not optimized specifically for any given input image. Data-dependent transforms such as the Karhunen-Loève Transform (KLT) or the Optimal Spectral Transform (OST) optimize some analytical criteria (e.g., the inter-component correlation or mutual information), but do not consider all aspects of the coding system applied to the transformed components. Recently, a framework that produces optimized MCTs dependent on the input image and the subsequent coding system was proposed for 8-bit pathology whole-slide images. This work extends this framework to higher bitdepths and investigate its performance for different types of high-dynamic range (HDR) contents. Experimental results indicate that the optimized MCTs yield average PSNR results 0.17%, 0.47% and 0.63% higher than those of the KLT for raw mosaic images, reconstructed HDR radiance scenes and color graded HDR contents, respectively.
基于多分量变换优化的自然HDR内容有损压缩
线性多分量变换(mct)是提高自然彩色图像压缩编码性能的常用方法。流行的mct,如RGB到Y'CbCr变换,并没有针对任何给定的输入图像进行专门优化。依赖于数据的变换,如karhunen - lo变换(KLT)或最优谱变换(OST)优化了一些分析标准(例如,成分间相关性或互信息),但没有考虑应用于转换成分的编码系统的所有方面。最近,针对8位病理整片图像,提出了一种基于输入图像和后续编码系统产生优化mct的框架。这项工作将该框架扩展到更高的位深,并研究其在不同类型的高动态范围(HDR)内容中的性能。实验结果表明,对于原始拼接图像、重建HDR亮度场景和色彩渐变HDR内容,优化后的mct的平均PSNR分别比KLT高0.17%、0.47%和0.63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信