X. Chen, Yazhou Luo, Lei Zhang, Weitao Zhang, Shujun Wang, Shitong Li
{"title":"Deviation Reduction of On-line and Off-line Computational Results of Short Circuit Ratio for Multiple Renewable Power Sources","authors":"X. Chen, Yazhou Luo, Lei Zhang, Weitao Zhang, Shujun Wang, Shitong Li","doi":"10.1109/POWERCON53785.2021.9697464","DOIUrl":null,"url":null,"abstract":"This paper examines the numerical characteristics of short circuit ratio for multiple renewable power sources (MRSCR) and reveals the causes of deviation between on-line and off-line computational results of MRSCR. It is found that model and parameter inconformity of on-line and off-line computational programs is the main factor leading to the deviation. In addition, difference of steady-state voltage of point of common coupling (PCC) of renewable power sources (RESs) also contributes to the deviation, yet the deviation is reasonable and can be compensated. On-line computational results of MRSCR are based on real-time power flow conditions and thus help improve the capability of power systems to accept renewable power. However, currently only off-line computational results are generally acknowledged as the certified reference in power system dispatching. Therefore, it is required that the deviation between on-line and off-line computational results has to be controlled to an acceptable level before on-line computation is officially put into service. In this paper, through model and parameter modification, the deviation of MRSCR in Ximeng Region between on-line and off-line computational program is reduced to a reasonable and acceptable level, effectively proving the reliability of on-line computational results and thus paving the way for the application of on-line computation of MRSCR in power system dispatching.","PeriodicalId":216155,"journal":{"name":"2021 International Conference on Power System Technology (POWERCON)","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Power System Technology (POWERCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERCON53785.2021.9697464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper examines the numerical characteristics of short circuit ratio for multiple renewable power sources (MRSCR) and reveals the causes of deviation between on-line and off-line computational results of MRSCR. It is found that model and parameter inconformity of on-line and off-line computational programs is the main factor leading to the deviation. In addition, difference of steady-state voltage of point of common coupling (PCC) of renewable power sources (RESs) also contributes to the deviation, yet the deviation is reasonable and can be compensated. On-line computational results of MRSCR are based on real-time power flow conditions and thus help improve the capability of power systems to accept renewable power. However, currently only off-line computational results are generally acknowledged as the certified reference in power system dispatching. Therefore, it is required that the deviation between on-line and off-line computational results has to be controlled to an acceptable level before on-line computation is officially put into service. In this paper, through model and parameter modification, the deviation of MRSCR in Ximeng Region between on-line and off-line computational program is reduced to a reasonable and acceptable level, effectively proving the reliability of on-line computational results and thus paving the way for the application of on-line computation of MRSCR in power system dispatching.