Javier Campoy, Ignacio-Iker Prado-Rujas, J. L. Risco-Martín, Katzalin Olcoz, M. S. Pérez
{"title":"Distributed training and inference of deep learning solar energy forecasting models","authors":"Javier Campoy, Ignacio-Iker Prado-Rujas, J. L. Risco-Martín, Katzalin Olcoz, M. S. Pérez","doi":"10.1109/PDP59025.2023.00035","DOIUrl":null,"url":null,"abstract":"Different accurate predictive models have been developed to forecast the amount of solar energy produced in a given area. These models are usually run in a centralized manner, considering irradiance inputs taken from a set of sensors that are deployed in that area. CAIDE is a framework that supports the deployment and analysis of solar plants following Model Based System Engineering (MBSE) and Internet of Things (IoT) methodologies. However, the current solution performs the training and inference phases of the solar energy forecasting models in a central way, not taking advantage of the distributed environment modeled by means of CAIDE. This work presents an extension of CAIDE that allows us to distribute the training and inference phases, obtaining performance improvements, and achieving a greater adaptation to the inherently distributed topology of the deployment of the sensors.","PeriodicalId":153500,"journal":{"name":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP59025.2023.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Different accurate predictive models have been developed to forecast the amount of solar energy produced in a given area. These models are usually run in a centralized manner, considering irradiance inputs taken from a set of sensors that are deployed in that area. CAIDE is a framework that supports the deployment and analysis of solar plants following Model Based System Engineering (MBSE) and Internet of Things (IoT) methodologies. However, the current solution performs the training and inference phases of the solar energy forecasting models in a central way, not taking advantage of the distributed environment modeled by means of CAIDE. This work presents an extension of CAIDE that allows us to distribute the training and inference phases, obtaining performance improvements, and achieving a greater adaptation to the inherently distributed topology of the deployment of the sensors.