{"title":"Design and Optimization of Nano-Optical Couplers For Controlling Transmission Between Electrically Isolated Nanowires","authors":"Gökhan Karaova, Utku Tahan, Tuna Atmaz, Ö. Ergül","doi":"10.1109/EMCTurkiye45372.2019.8976015","DOIUrl":null,"url":null,"abstract":"We present design, optimization, and simulation of effective nano-optical couplers to control power transmission in nanowire networks. The couplers consist of careful arrangements of nanoparticles that are designed in an optimization environment based on genetic algorithms and a full-wave solver. The nanowire segments are electrically isolated from each other, leading to more reconfigurable and adaptable systems. We show that, even in the absence of direct contacts between nanowires, high-performance power transmission can be achieved with the designed compact couplers, while their flexibility allows for the construction of more complex systems.","PeriodicalId":152036,"journal":{"name":"2019 Fifth International Electromagnetic Compatibility Conference (EMC Turkiye)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Fifth International Electromagnetic Compatibility Conference (EMC Turkiye)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCTurkiye45372.2019.8976015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present design, optimization, and simulation of effective nano-optical couplers to control power transmission in nanowire networks. The couplers consist of careful arrangements of nanoparticles that are designed in an optimization environment based on genetic algorithms and a full-wave solver. The nanowire segments are electrically isolated from each other, leading to more reconfigurable and adaptable systems. We show that, even in the absence of direct contacts between nanowires, high-performance power transmission can be achieved with the designed compact couplers, while their flexibility allows for the construction of more complex systems.