Optimization of model predictive control by means of sequential parameter optimization

A. Davtyan, Stefan Hoffmann, R. Scheuring
{"title":"Optimization of model predictive control by means of sequential parameter optimization","authors":"A. Davtyan, Stefan Hoffmann, R. Scheuring","doi":"10.1109/CICA.2011.5945754","DOIUrl":null,"url":null,"abstract":"A methodology is developed for automatically tuning the main parameters of model predictive control (MPC) such as prediction horizon, control horizon and control interval. The tuning of parameters is done by means of sequential parameter optimization. In the process of optimization one of the major issues is the choice of an objective function. Several types of objective functions are tested in order to choose the one which solves the MPC tuning problem most adequate. In addition, different scenarios are analyzed if an exact model of the true plant does not exist.","PeriodicalId":420555,"journal":{"name":"Computational Intelligence in Control and Automation (CICA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2011.5945754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A methodology is developed for automatically tuning the main parameters of model predictive control (MPC) such as prediction horizon, control horizon and control interval. The tuning of parameters is done by means of sequential parameter optimization. In the process of optimization one of the major issues is the choice of an objective function. Several types of objective functions are tested in order to choose the one which solves the MPC tuning problem most adequate. In addition, different scenarios are analyzed if an exact model of the true plant does not exist.
用序贯参数优化方法优化模型预测控制
提出了一种模型预测控制(MPC)中预测水平、控制水平和控制区间等主要参数的自动整定方法。参数的调整是通过顺序参数优化来完成的。在优化过程中,一个主要问题是目标函数的选择。为了选择最能充分解决MPC调谐问题的目标函数,对几种目标函数进行了测试。此外,如果不存在真实植物的精确模型,则分析不同的情景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信