Embracing imperfection in learning analytics

Kirsty Kitto, S. B. Shum, Andrew Gibson
{"title":"Embracing imperfection in learning analytics","authors":"Kirsty Kitto, S. B. Shum, Andrew Gibson","doi":"10.1145/3170358.3170413","DOIUrl":null,"url":null,"abstract":"Learning Analytics (LA) sits at the confluence of many contributing disciplines, which brings the risk of hidden assumptions inherited from those fields. Here, we consider a hidden assumption derived from computer science, namely, that improving computational accuracy in classification is always a worthy goal. We demonstrate that this assumption is unlikely to hold in some important educational contexts, and argue that embracing computational \"imperfection\" can improve outcomes for those scenarios. Specifically, we show that learner-facing approaches aimed at \"learning how to learn\" require more holistic validation strategies. We consider what information must be provided in order to reasonably evaluate algorithmic tools in LA, to facilitate transparency and realistic performance comparisons.","PeriodicalId":437369,"journal":{"name":"Proceedings of the 8th International Conference on Learning Analytics and Knowledge","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3170358.3170413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

Learning Analytics (LA) sits at the confluence of many contributing disciplines, which brings the risk of hidden assumptions inherited from those fields. Here, we consider a hidden assumption derived from computer science, namely, that improving computational accuracy in classification is always a worthy goal. We demonstrate that this assumption is unlikely to hold in some important educational contexts, and argue that embracing computational "imperfection" can improve outcomes for those scenarios. Specifically, we show that learner-facing approaches aimed at "learning how to learn" require more holistic validation strategies. We consider what information must be provided in order to reasonably evaluate algorithmic tools in LA, to facilitate transparency and realistic performance comparisons.
接受学习分析中的不完美
学习分析(LA)位于许多贡献学科的交汇处,这带来了从这些领域继承的隐藏假设的风险。在这里,我们考虑一个来自计算机科学的隐藏假设,即提高分类的计算精度始终是一个有价值的目标。我们证明这种假设在一些重要的教育环境中不太可能成立,并认为接受计算“不完美”可以改善这些情况的结果。具体来说,我们表明,面向学习者的方法旨在“学习如何学习”,需要更全面的验证策略。我们考虑必须提供哪些信息才能合理评估LA中的算法工具,以促进透明度和现实的性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信