New swing-blocking methods for digital distance protection using Support Vector Machine

W. Kampeerawat, W. Buangam, S. Chusanapiputt
{"title":"New swing-blocking methods for digital distance protection using Support Vector Machine","authors":"W. Kampeerawat, W. Buangam, S. Chusanapiputt","doi":"10.1109/POWERCON.2010.5666525","DOIUrl":null,"url":null,"abstract":"This paper presents a method for power swing and fault diagnosis of power system based on Support Vector Machine (SVM) classifier. The method adopts Least Square Support Vector Machine (LS-SVM) classifier to identify the power swing and fault types. The power swing blocking elements are based on monitor the rate of change of the impedance, the power swing center voltage, the positive current and zero sequence component. The process of training the LS-SVM using a K-folded cross validation process for determining the values of parameter σ and parameter λ in RBF kernel parameter that will give minimum classification error. The proposed method can successfully detect power swing and provide power swing blocking for accurate distance protection during power swing.","PeriodicalId":169553,"journal":{"name":"2010 International Conference on Power System Technology","volume":"198200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Power System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERCON.2010.5666525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a method for power swing and fault diagnosis of power system based on Support Vector Machine (SVM) classifier. The method adopts Least Square Support Vector Machine (LS-SVM) classifier to identify the power swing and fault types. The power swing blocking elements are based on monitor the rate of change of the impedance, the power swing center voltage, the positive current and zero sequence component. The process of training the LS-SVM using a K-folded cross validation process for determining the values of parameter σ and parameter λ in RBF kernel parameter that will give minimum classification error. The proposed method can successfully detect power swing and provide power swing blocking for accurate distance protection during power swing.
基于支持向量机的数字距离保护摆动阻塞新方法
提出了一种基于支持向量机分类器的电力系统摆动与故障诊断方法。该方法采用最小二乘支持向量机(LS-SVM)分类器对功率摆动和故障类型进行识别。功率摆阻元件是基于对阻抗变化率、功率摆中心电压、正电流和零序分量的监测。LS-SVM的训练过程使用k -fold交叉验证过程来确定RBF核参数中参数σ和参数λ的值,使分类误差最小。该方法能够成功地检测功率摆动,并提供功率摆动阻断,实现功率摆动过程中的精确距离保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信