Effects of Taper Configurations on Heat Transfer and Pressure Drop in Single-Phase Flows in Microgaps

D. Moreira, G. Ribatski, S. Kandlikar
{"title":"Effects of Taper Configurations on Heat Transfer and Pressure Drop in Single-Phase Flows in Microgaps","authors":"D. Moreira, G. Ribatski, S. Kandlikar","doi":"10.1115/icnmm2020-1012","DOIUrl":null,"url":null,"abstract":"\n This paper presents a comparison of heat transfer and pressure drop during single-phase flows inside diverging, converging, and uniform microgaps using distilled water as the working fluid. The microgaps were created on a plain heated copper surface with a polysulfone cover that was either uniform or tapered with an angle of 3.4°. The average gap height was 400 microns and the length and width dimensions were 10 mm × 10 mm, resulting in an average hydraulic diameter of approximately 800 microns for all configurations. Experiments were conducted at atmospheric pressure and the inlet temperature was set to 30 °C. Heat transfer and pressure drop data were acquired for flow rates varying from 57 to 485 ml/min and the surface temperature was monitored not to exceed 90 °C to avoid bubble nucleation, so the heat flux varied from 35 to 153 W/cm2 depending on the flow rate. The uniform configuration resulted in the lowest pressure drop, and the diverging one showed slightly higher pressure drop values than the converging configuration, possibly because the flow is most constrained at the inlet section, where the fluid is colder and presents higher viscosity. In addition, a minor dependence of pressure drop with heat flux was observed due to temperature dependent properties. The best heat transfer performance was obtained with the converging configuration, which was especially significant at low flow rates. This behavior could be explained by an increase in the heat transfer coefficient due to flow acceleration in converging gaps, which compensates the decrease in temperature difference between the fluid and the surface due to fluid heating along the gap. Overall, the comparison between the three configurations shows that converging microgaps have better performance than uniform or diverging ones for single-phase flows, and such effect is more pronounced at lower flow rates, when the fluid experiences higher temperature changes.","PeriodicalId":198176,"journal":{"name":"ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icnmm2020-1012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comparison of heat transfer and pressure drop during single-phase flows inside diverging, converging, and uniform microgaps using distilled water as the working fluid. The microgaps were created on a plain heated copper surface with a polysulfone cover that was either uniform or tapered with an angle of 3.4°. The average gap height was 400 microns and the length and width dimensions were 10 mm × 10 mm, resulting in an average hydraulic diameter of approximately 800 microns for all configurations. Experiments were conducted at atmospheric pressure and the inlet temperature was set to 30 °C. Heat transfer and pressure drop data were acquired for flow rates varying from 57 to 485 ml/min and the surface temperature was monitored not to exceed 90 °C to avoid bubble nucleation, so the heat flux varied from 35 to 153 W/cm2 depending on the flow rate. The uniform configuration resulted in the lowest pressure drop, and the diverging one showed slightly higher pressure drop values than the converging configuration, possibly because the flow is most constrained at the inlet section, where the fluid is colder and presents higher viscosity. In addition, a minor dependence of pressure drop with heat flux was observed due to temperature dependent properties. The best heat transfer performance was obtained with the converging configuration, which was especially significant at low flow rates. This behavior could be explained by an increase in the heat transfer coefficient due to flow acceleration in converging gaps, which compensates the decrease in temperature difference between the fluid and the surface due to fluid heating along the gap. Overall, the comparison between the three configurations shows that converging microgaps have better performance than uniform or diverging ones for single-phase flows, and such effect is more pronounced at lower flow rates, when the fluid experiences higher temperature changes.
锥形结构对微间隙内单相流动传热和压降的影响
本文以蒸馏水为工质,比较了发散型、收敛型和均匀型微间隙内单相流动的传热和压降。微间隙是在加热的纯铜表面产生的,表面有聚砜覆盖,均匀或以3.4°的角度变细。平均间隙高度为400微米,长度和宽度尺寸为10 mm × 10 mm,所有配置的平均液压直径约为800微米。实验在常压下进行,入口温度设置为30℃。在流速为57 ~ 485 ml/min的情况下获得传热和压降数据,并监测表面温度不超过90℃,以避免气泡成核,因此热流密度根据流速变化在35 ~ 153 W/cm2之间。均匀配置的压降最小,发散配置的压降值略高于收敛配置,这可能是因为流动在入口截面受到最大约束,流体温度更低,粘度更高。此外,由于温度相关的性质,观察到压力降与热流密度的依赖性较小。在低流量条件下,聚敛结构的换热性能最好。这种行为可以解释为,由于流动加速在收敛的间隙中增加了传热系数,这补偿了由于流体沿着间隙加热而导致的流体与表面之间温差的减小。综上所述,三种构型的对比表明,对于单相流动,收敛型微间隙的性能优于均匀型或发散型微间隙,且在低流速下,当流体温度变化较大时,这种效果更为明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信