Distributed MIS via All-to-All Communication

M. Ghaffari
{"title":"Distributed MIS via All-to-All Communication","authors":"M. Ghaffari","doi":"10.1145/3087801.3087830","DOIUrl":null,"url":null,"abstract":"Computing a Maximal Independent Set (MIS) is a central problem in distributed graph algorithms. This paper presents an improved randomized distributed algorithm for congested clique model, defined as follows: Given a graph G=(V, E), initially each node knows only its neighbors. Communication happens in synchronous rounds over a complete graph, and per round each node can send O(log n) bits to each other node. We present a randomized algorithm that computes an MIS in Õ((log Δ)/(√(log n)) + 1 ) ≤ Õ(√(log Δ)) rounds of congested clique, with high probability. Here Δ denotes the maximum degree in the graph. This improves quadratically on the O(log Δ) algorithm of [Ghaffari, SODA'16]. The core technical novelty in this result is a certain local sparsification technique for MIS, which we believe to be of independent interest.","PeriodicalId":324970,"journal":{"name":"Proceedings of the ACM Symposium on Principles of Distributed Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087801.3087830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Computing a Maximal Independent Set (MIS) is a central problem in distributed graph algorithms. This paper presents an improved randomized distributed algorithm for congested clique model, defined as follows: Given a graph G=(V, E), initially each node knows only its neighbors. Communication happens in synchronous rounds over a complete graph, and per round each node can send O(log n) bits to each other node. We present a randomized algorithm that computes an MIS in Õ((log Δ)/(√(log n)) + 1 ) ≤ Õ(√(log Δ)) rounds of congested clique, with high probability. Here Δ denotes the maximum degree in the graph. This improves quadratically on the O(log Δ) algorithm of [Ghaffari, SODA'16]. The core technical novelty in this result is a certain local sparsification technique for MIS, which we believe to be of independent interest.
通过全对全通信实现分布式管理信息系统
最大独立集的计算是分布式图算法中的一个核心问题。本文提出了一种改进的拥挤团模型随机分布算法,定义如下:给定一个图G=(V, E),初始每个节点只知道它的邻居。通信在一个完整的图上同步进行,每轮每个节点可以向其他节点发送O(log n)位。我们提出了一种随机化算法,该算法以高概率在Õ((log Δ)/(√(log n)) + 1)≤Õ(√(log Δ))轮的拥塞团中计算一个MIS。这里Δ表示图中的最大度。这对[Ghaffari, SODA'16]的O(log Δ)算法进行了二次改进。该结果的核心技术创新是MIS的某种局部稀疏化技术,我们认为这是一个独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信