System Level User Behavior Biometrics using Fisher Features and Gaussian Mixture Models

Yingbo Song, M. B. Salem, Shlomo Hershkop, S. Stolfo
{"title":"System Level User Behavior Biometrics using Fisher Features and Gaussian Mixture Models","authors":"Yingbo Song, M. B. Salem, Shlomo Hershkop, S. Stolfo","doi":"10.1109/SPW.2013.33","DOIUrl":null,"url":null,"abstract":"We propose a machine learning-based method for biometric identification of user behavior, for the purpose of masquerade and insider threat detection. We designed a sensor that captures system-level events such as process creation, registry key changes, and file system actions. These measurements are used to represent a user's unique behavior profile, and are refined through the process of Fisher feature selection to optimize their discriminative significance. Finally, a Gaussian mixture model is trained for each user using these features. We show that this system achieves promising results for user behavior modeling and identification, and surpasses previous works in this area.","PeriodicalId":383569,"journal":{"name":"2013 IEEE Security and Privacy Workshops","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Security and Privacy Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2013.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

We propose a machine learning-based method for biometric identification of user behavior, for the purpose of masquerade and insider threat detection. We designed a sensor that captures system-level events such as process creation, registry key changes, and file system actions. These measurements are used to represent a user's unique behavior profile, and are refined through the process of Fisher feature selection to optimize their discriminative significance. Finally, a Gaussian mixture model is trained for each user using these features. We show that this system achieves promising results for user behavior modeling and identification, and surpasses previous works in this area.
使用Fisher特征和高斯混合模型的系统级用户行为生物识别
我们提出了一种基于机器学习的用户行为生物识别方法,用于伪装和内部威胁检测。我们设计了一个传感器,用于捕获系统级事件,如进程创建、注册表项更改和文件系统操作。这些测量值用于表示用户的独特行为特征,并通过Fisher特征选择过程进行细化,以优化其判别意义。最后,利用这些特征为每个用户训练高斯混合模型。我们表明,该系统在用户行为建模和识别方面取得了令人鼓舞的成果,并且超越了该领域的先前工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信