{"title":"Corpus-Based Task-Specific Relation Discovery","authors":"Karthik Ramanan","doi":"10.18653/v1/2023.matching-1.5","DOIUrl":null,"url":null,"abstract":"Relation extraction is a crucial language processing task for various downstream applications, including knowledge base completion, question answering, and summarization. Traditional relation-extraction techniques, however, rely on a predefined set of relations and model the extraction as a classification task. Consequently, such closed-world extraction methods are insufficient for inducing novel relations from a corpus. Unsupervised techniques like OpenIE, which extract triples, generate relations that are too general for practical information extraction applications. In this work, we contribute the following: 1) We motivate and introduce a new task, corpus-based task-specific relation discovery. 2) We adapt existing data sources to create Wiki-Art, a novel dataset for task-specific relation discovery. 3) We develop a novel framework for relation discovery using zero-shot entity linking, prompting, and type-specific clustering. Our approach effectively connects unstructured text spans to their shared underlying relations, bridging the data-representation gap and significantly outperforming baselines on both quantitative and qualitative metrics. Our code and data are available in our GitHub repository.","PeriodicalId":107861,"journal":{"name":"Proceedings of the First Workshop on Matching From Unstructured and Structured Data (MATCHING 2023)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Matching From Unstructured and Structured Data (MATCHING 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.matching-1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Relation extraction is a crucial language processing task for various downstream applications, including knowledge base completion, question answering, and summarization. Traditional relation-extraction techniques, however, rely on a predefined set of relations and model the extraction as a classification task. Consequently, such closed-world extraction methods are insufficient for inducing novel relations from a corpus. Unsupervised techniques like OpenIE, which extract triples, generate relations that are too general for practical information extraction applications. In this work, we contribute the following: 1) We motivate and introduce a new task, corpus-based task-specific relation discovery. 2) We adapt existing data sources to create Wiki-Art, a novel dataset for task-specific relation discovery. 3) We develop a novel framework for relation discovery using zero-shot entity linking, prompting, and type-specific clustering. Our approach effectively connects unstructured text spans to their shared underlying relations, bridging the data-representation gap and significantly outperforming baselines on both quantitative and qualitative metrics. Our code and data are available in our GitHub repository.