Radar-based blood pressure estimation using multiple features

Haotian Shi, Jiasheng Pan, Zhi Zheng, Bo Wang, Cheng Shen, Yongxin Guo
{"title":"Radar-based blood pressure estimation using multiple features","authors":"Haotian Shi, Jiasheng Pan, Zhi Zheng, Bo Wang, Cheng Shen, Yongxin Guo","doi":"10.1109/IMBioC52515.2022.9790124","DOIUrl":null,"url":null,"abstract":"This paper presents a non-contact blood pressure measurement model based on the random forest algorithm and arterial pulse waveform detected by radar. After the radar signal is pre-processed with filtering and smoothing methods, feature parameters of arterial pulse waves are automatically extracted, and correlation analysis is conducted to further explore the relationship between feature parameters and blood pressure. Then, a blood pressure regression model based on the random forest is established. Compared with the reference blood pressure obtained by a sphygmomanometer, the DBP error of this model is $0.22 \\pm 3.85\\ \\text{mmHg}$ (Mean Difference ± Standard Deviation), and the SBP error is $2.52 \\pm 6.73\\text{mmHg}$ (Mean Difference ± Standard Deviation), which proves this method can effectively measure blood pressure by using a single radar in a non-contact state.","PeriodicalId":305829,"journal":{"name":"2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"378 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMBioC52515.2022.9790124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a non-contact blood pressure measurement model based on the random forest algorithm and arterial pulse waveform detected by radar. After the radar signal is pre-processed with filtering and smoothing methods, feature parameters of arterial pulse waves are automatically extracted, and correlation analysis is conducted to further explore the relationship between feature parameters and blood pressure. Then, a blood pressure regression model based on the random forest is established. Compared with the reference blood pressure obtained by a sphygmomanometer, the DBP error of this model is $0.22 \pm 3.85\ \text{mmHg}$ (Mean Difference ± Standard Deviation), and the SBP error is $2.52 \pm 6.73\text{mmHg}$ (Mean Difference ± Standard Deviation), which proves this method can effectively measure blood pressure by using a single radar in a non-contact state.
基于雷达的多特征血压估计
本文提出了一种基于随机森林算法和雷达检测动脉脉搏波形的非接触式血压测量模型。雷达信号经过滤波平滑预处理后,自动提取动脉脉搏波特征参数,并进行相关性分析,进一步探索特征参数与血压之间的关系。然后,建立了基于随机森林的血压回归模型。与血压计测得的参考血压相比,该模型的舒张压误差为$0.22 \pm 3.85\ text{mmHg}$(平均差值±标准差),收缩压误差为$2.52 \pm 6.73\text{mmHg}$(平均差值±标准差),证明该方法可以在非接触状态下使用单个雷达进行有效的血压测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信