{"title":"Temporal and Spatial Characteristics of mm Wave Propagation Channels for UAVs","authors":"W. Khawaja, O. Ozdemir, I. Guvenc","doi":"10.1109/GSMM.2018.8439182","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) are envisioned to be an integral part of future 5G communication systems. The agile nature of UAVs for serving users at different locations can help to dynamically optimize coverage and quality-of-service (QoS) in future networks. In this work, we explore the small scale temporal and spatial characteristics of mm Wave air-to-ground (AG) line-of-sight (LOS) propagation channels at 28 GHz in different environmental scenarios: dense-urban, suburban, rural, and over sea using omni-directional antennas employing Wireless InSite ray tracing software. We classify the received multipath components (MPCs) into persistent and non-persistent components. The small scale temporal and spatial characteristics of the AG propagation channel are found to be dependent on the scatterer properties: number, distribution, and geometry. Additionally, clustering of MPCs in the time and spatial domain for different environments is found to be dependent on the scatterer properties and receiver sensitivity. When the height of the UAV is comparable to the height of the scatterers, we observe large temporal and angular spreads.","PeriodicalId":441407,"journal":{"name":"2018 11th Global Symposium on Millimeter Waves (GSMM)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th Global Symposium on Millimeter Waves (GSMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSMM.2018.8439182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
Unmanned aerial vehicles (UAVs) are envisioned to be an integral part of future 5G communication systems. The agile nature of UAVs for serving users at different locations can help to dynamically optimize coverage and quality-of-service (QoS) in future networks. In this work, we explore the small scale temporal and spatial characteristics of mm Wave air-to-ground (AG) line-of-sight (LOS) propagation channels at 28 GHz in different environmental scenarios: dense-urban, suburban, rural, and over sea using omni-directional antennas employing Wireless InSite ray tracing software. We classify the received multipath components (MPCs) into persistent and non-persistent components. The small scale temporal and spatial characteristics of the AG propagation channel are found to be dependent on the scatterer properties: number, distribution, and geometry. Additionally, clustering of MPCs in the time and spatial domain for different environments is found to be dependent on the scatterer properties and receiver sensitivity. When the height of the UAV is comparable to the height of the scatterers, we observe large temporal and angular spreads.