Effect of Genetic Algorithm in Optimizing Deep Structured Petroleum Reservoir Classifier

R. K. Pandey, Adarsh Kumar, Akhilesh Kumar Sharma, R. K. Sharma, Ha Huy Cuong Nguyen
{"title":"Effect of Genetic Algorithm in Optimizing Deep Structured Petroleum Reservoir Classifier","authors":"R. K. Pandey, Adarsh Kumar, Akhilesh Kumar Sharma, R. K. Sharma, Ha Huy Cuong Nguyen","doi":"10.1109/ICCCS55188.2022.10079293","DOIUrl":null,"url":null,"abstract":"Well-test analysis contributes to petroleum reservoir description for field development. The reservoir formation identification is the foremost step in characterizing petroleum reservoirs. This research aims to investigate the performance of evolutionary optimization assisted deep structured classifier to identify the homogeneous and fractured reservoirs. The classifier consists of OSTM-long short-term memory and dense neural networks. The hyper-parameters of the classifier have been fine tuned, using evolutionary optimization. The (GA)genetic algorithm conducts a rigorous problem space search to fine-tune the model. The proposed classifier has attained 95.53% accuracy in classifying the reservoirs and their external boundaries. An optimized classifier automatically detects the reservoir formations minimizing human efforts and costs.","PeriodicalId":149615,"journal":{"name":"2022 7th International Conference on Computing, Communication and Security (ICCCS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computing, Communication and Security (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS55188.2022.10079293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Well-test analysis contributes to petroleum reservoir description for field development. The reservoir formation identification is the foremost step in characterizing petroleum reservoirs. This research aims to investigate the performance of evolutionary optimization assisted deep structured classifier to identify the homogeneous and fractured reservoirs. The classifier consists of OSTM-long short-term memory and dense neural networks. The hyper-parameters of the classifier have been fine tuned, using evolutionary optimization. The (GA)genetic algorithm conducts a rigorous problem space search to fine-tune the model. The proposed classifier has attained 95.53% accuracy in classifying the reservoirs and their external boundaries. An optimized classifier automatically detects the reservoir formations minimizing human efforts and costs.
遗传算法在深层构造油气藏分类优化中的作用
试井分析有助于油藏描述,为油田开发提供依据。储层识别是油藏表征的首要步骤。研究了基于演化优化的深部构造分类器识别均质和裂缝性储层的性能。该分类器由ostm -长短时记忆和密集神经网络组成。使用进化优化对分类器的超参数进行了微调。遗传算法通过严格的问题空间搜索对模型进行微调。该分类器对储层及其外部边界的分类准确率达到95.53%。优化的分类器自动检测储层,最大限度地减少人力和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信