Sub-pixel mapping of urban green space using multiple endmember spectral mixture analysis of EO-1 Hyperion data

Jie Lv, Xiangnan Liu
{"title":"Sub-pixel mapping of urban green space using multiple endmember spectral mixture analysis of EO-1 Hyperion data","authors":"Jie Lv, Xiangnan Liu","doi":"10.1109/URS.2009.5137517","DOIUrl":null,"url":null,"abstract":"Urban green space is an important biophysical component in assessing urban environment. Remote sensing technology offers an alternative method to traditional ground-based survey of these green spaces. However, accurate green space extraction is still a challenge due to the existence of mixed pixels. Tradional methods such as classification and NDVI for deriving green space are found to be inaccurate and unsatisfactory. Multiple endmember spectral mixture analysis (MESMA) models spectra as the linear sum of spectrally pure endmembers that vary on a per-pixel basis, which is a technique for identifying materials in a hyperspectral image using endmembers from a spectral library.","PeriodicalId":154334,"journal":{"name":"2009 Joint Urban Remote Sensing Event","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Joint Urban Remote Sensing Event","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URS.2009.5137517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Urban green space is an important biophysical component in assessing urban environment. Remote sensing technology offers an alternative method to traditional ground-based survey of these green spaces. However, accurate green space extraction is still a challenge due to the existence of mixed pixels. Tradional methods such as classification and NDVI for deriving green space are found to be inaccurate and unsatisfactory. Multiple endmember spectral mixture analysis (MESMA) models spectra as the linear sum of spectrally pure endmembers that vary on a per-pixel basis, which is a technique for identifying materials in a hyperspectral image using endmembers from a spectral library.
基于EO-1 Hyperion数据多端元光谱混合分析的城市绿地亚像元制图
城市绿地是评价城市环境的重要生物物理组成部分。遥感技术为这些绿地的传统地面调查提供了一种替代方法。然而,由于混合像素的存在,准确的绿地提取仍然是一个挑战。传统的分类、NDVI等方法对绿地面积的估算存在一定的不准确性和不理想性。多端元光谱混合分析(MESMA)将光谱建模为光谱纯端元的线性和,这些端元在每像素的基础上变化,这是一种利用光谱库中的端元识别高光谱图像中的物质的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信