Hidden Markov models: An insight

Mohd Izhan Mohd Yusoff, Ibrahim Mohamed, M. A. Abu Bakar
{"title":"Hidden Markov models: An insight","authors":"Mohd Izhan Mohd Yusoff, Ibrahim Mohamed, M. A. Abu Bakar","doi":"10.1109/ICIMU.2014.7066641","DOIUrl":null,"url":null,"abstract":"Hidden Markov models (HMM) is a probabilistic model consisting of variables representing observations, variables that are hidden, the initial state distribution, transition matrix, and parameters for all observation distributions. The said model is commonly used in speech recognition field and it has seen an increase in terms of usage, which include user profiling in mobile communication networks, and energy disaggregation. This paper shows, via numerical example, the computation of HMM's forward procedure will exceed the precision range of essentially any machine (even in double precision). It also extends the procedure to include Gaussian mixture hidden Markov models (GMHMM), the procedure that can be used as both a generator of observations, and as a model for how a given observation sequence was generated by an appropriate HMM.","PeriodicalId":408534,"journal":{"name":"Proceedings of the 6th International Conference on Information Technology and Multimedia","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Information Technology and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMU.2014.7066641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Hidden Markov models (HMM) is a probabilistic model consisting of variables representing observations, variables that are hidden, the initial state distribution, transition matrix, and parameters for all observation distributions. The said model is commonly used in speech recognition field and it has seen an increase in terms of usage, which include user profiling in mobile communication networks, and energy disaggregation. This paper shows, via numerical example, the computation of HMM's forward procedure will exceed the precision range of essentially any machine (even in double precision). It also extends the procedure to include Gaussian mixture hidden Markov models (GMHMM), the procedure that can be used as both a generator of observations, and as a model for how a given observation sequence was generated by an appropriate HMM.
隐马尔可夫模型:一种见解
隐马尔可夫模型(HMM)是一种概率模型,由表示观测值的变量、隐变量、初始状态分布、转移矩阵和所有观测值分布的参数组成。该模型广泛应用于语音识别领域,并在移动通信网络中的用户分析和能量分解等方面得到了越来越多的应用。通过数值算例表明,隐马尔可夫正演过程的计算将超出任何机器的精度范围(甚至在双精度情况下)。它还扩展了该过程,以包括高斯混合隐马尔可夫模型(GMHMM),该过程既可以用作观测值的生成器,也可以用作如何由适当的HMM生成给定观测序列的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信