Multi-sensor data classification in remote sensing using MRF regional growing algorithm

Sanghoon Lee, Asook Suh, Myunghee Jung
{"title":"Multi-sensor data classification in remote sensing using MRF regional growing algorithm","authors":"Sanghoon Lee, Asook Suh, Myunghee Jung","doi":"10.1109/IGARSS.2001.978194","DOIUrl":null,"url":null,"abstract":"This paper studies a multi-stage method using hierarchical clustering for unsupervised image classification to classify the land-cover using remotely-sensed data from multiple sensors. The multi-stage method performs region-growing segmentation using a hierarchical clustering procedure which makes use of the spatial contextual information by characterizing geophysical connectedness of digital image structure with Markov random field.","PeriodicalId":135740,"journal":{"name":"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2001.978194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies a multi-stage method using hierarchical clustering for unsupervised image classification to classify the land-cover using remotely-sensed data from multiple sensors. The multi-stage method performs region-growing segmentation using a hierarchical clustering procedure which makes use of the spatial contextual information by characterizing geophysical connectedness of digital image structure with Markov random field.
基于MRF区域增长算法的遥感多传感器数据分类
研究了一种多阶段分层聚类无监督图像分类方法,利用多传感器遥感数据对土地覆盖进行分类。该方法利用空间上下文信息,利用马尔可夫随机场来表征数字图像结构的地球物理连通性,采用层次聚类方法进行多阶段区域增长分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信