Nirman Kumar, Benjamin Raichel, S. Suri, Kevin Verbeek
{"title":"Most Likely Voronoi Diagrams in Higher Dimensions","authors":"Nirman Kumar, Benjamin Raichel, S. Suri, Kevin Verbeek","doi":"10.4230/LIPIcs.FSTTCS.2016.31","DOIUrl":null,"url":null,"abstract":"The Most Likely Voronoi Diagram is a generalization of the well known Voronoi Diagrams to a stochastic setting, where a stochastic point is a point associated with a given probability of existence, and the cell for such a point is the set of points which would classify the given point as its most likely nearest neighbor. We investigate the complexity of this subdivision of space in d dimensions. We show that in the general case, the complexity of such a subdivision is Omega(n^{2d}) where n is the number of points. This settles an open question raised in a recent (ISAAC 2014) paper of Suri and Verbeek, which first defined the Most Likely Voronoi Diagram. We also show that when the probabilities are assigned using a random permutation of a fixed set of values, in expectation the complexity is only ~O(n^{ceil{d/2}}) where the ~O(*) means that logarithmic factors are suppressed. In the worst case, this bound is tight up to polylog factors.","PeriodicalId":175000,"journal":{"name":"Foundations of Software Technology and Theoretical Computer Science","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Software Technology and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSTTCS.2016.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The Most Likely Voronoi Diagram is a generalization of the well known Voronoi Diagrams to a stochastic setting, where a stochastic point is a point associated with a given probability of existence, and the cell for such a point is the set of points which would classify the given point as its most likely nearest neighbor. We investigate the complexity of this subdivision of space in d dimensions. We show that in the general case, the complexity of such a subdivision is Omega(n^{2d}) where n is the number of points. This settles an open question raised in a recent (ISAAC 2014) paper of Suri and Verbeek, which first defined the Most Likely Voronoi Diagram. We also show that when the probabilities are assigned using a random permutation of a fixed set of values, in expectation the complexity is only ~O(n^{ceil{d/2}}) where the ~O(*) means that logarithmic factors are suppressed. In the worst case, this bound is tight up to polylog factors.