Error estimate of a fourth-order Runge-Kutta method with only one initial derivative evaluation

byA. S. Chai
{"title":"Error estimate of a fourth-order Runge-Kutta method with only one initial derivative evaluation","authors":"byA. S. Chai","doi":"10.1145/1468075.1468144","DOIUrl":null,"url":null,"abstract":"In the numerical solution of differential equations it is desirable to have estimates of the local discretization (or truncation) errors of solutions at each step. The estimate may be used not only to provide some idea of the errors, but also to indicate when to adjust the step size. If the magnitude of the estimate is greater than the preassigned upper bound, the step size is reduced to achieve smaller local errors. If the magnitude of the estimate is less than the preassigned lower bound, the step size is increased to save the computing time.","PeriodicalId":180876,"journal":{"name":"Proceedings of the April 30--May 2, 1968, spring joint computer conference","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1968-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the April 30--May 2, 1968, spring joint computer conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1468075.1468144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In the numerical solution of differential equations it is desirable to have estimates of the local discretization (or truncation) errors of solutions at each step. The estimate may be used not only to provide some idea of the errors, but also to indicate when to adjust the step size. If the magnitude of the estimate is greater than the preassigned upper bound, the step size is reduced to achieve smaller local errors. If the magnitude of the estimate is less than the preassigned lower bound, the step size is increased to save the computing time.
只有一个初始导数值的四阶龙格-库塔方法的误差估计
在微分方程的数值解中,需要对每一步解的局部离散化(或截断)误差进行估计。估计不仅可以用来提供一些误差的概念,而且还可以指示何时调整步长。如果估计的幅度大于预分配的上界,则减小步长以实现较小的局部误差。如果估计的幅度小于预分配的下界,则增加步长以节省计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信