Exploring clustering in SOMA

T. Kadavy, Michal Pluhacek, Adam Viktorin, Anezka Kazikova, R. Šenkeřík
{"title":"Exploring clustering in SOMA","authors":"T. Kadavy, Michal Pluhacek, Adam Viktorin, Anezka Kazikova, R. Šenkeřík","doi":"10.1109/COMPENG50184.2022.9905440","DOIUrl":null,"url":null,"abstract":"During the developing phase of the new evolutionary algorithm (EA) or the analysis, several techniques or measurements are used to capture the inner dynamic of an algorithm. Besides the usual ones, for example, convergence graphs, population diversity, or complex networks, the scientists may also use clustering. Clustering analysis may naturally be used to analyze the grouping of individuals in swarm-based algorithms. This paper examines the possibilities of the clustering analysis for the Self-Organizing Migrating Algorithm with CLustering-aided migration (SOMA-CL). The algorithm is described in detail, together with several cluster analyses which can be used to investigate the behavior of the algorithm.","PeriodicalId":211056,"journal":{"name":"2022 IEEE Workshop on Complexity in Engineering (COMPENG)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Workshop on Complexity in Engineering (COMPENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPENG50184.2022.9905440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

During the developing phase of the new evolutionary algorithm (EA) or the analysis, several techniques or measurements are used to capture the inner dynamic of an algorithm. Besides the usual ones, for example, convergence graphs, population diversity, or complex networks, the scientists may also use clustering. Clustering analysis may naturally be used to analyze the grouping of individuals in swarm-based algorithms. This paper examines the possibilities of the clustering analysis for the Self-Organizing Migrating Algorithm with CLustering-aided migration (SOMA-CL). The algorithm is described in detail, together with several cluster analyses which can be used to investigate the behavior of the algorithm.
探索SOMA中的聚类
在新进化算法(EA)或分析的开发阶段,使用了几种技术或测量方法来捕获算法的内部动态。除了常用的方法,例如收敛图、种群多样性或复杂网络,科学家们还可以使用聚类。聚类分析可以很自然地用于分析基于群的算法中个体的分组。本文探讨了聚类辅助迁移自组织迁移算法(SOMA-CL)的聚类分析的可能性。详细描述了该算法,并进行了一些聚类分析,这些聚类分析可用于研究该算法的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信