Classical Adiabatic Annealing in Memristor Hopfield Neural Networks for Combinatorial Optimization

Suhas Kumar, T. Vaerenbergh, J. Strachan
{"title":"Classical Adiabatic Annealing in Memristor Hopfield Neural Networks for Combinatorial Optimization","authors":"Suhas Kumar, T. Vaerenbergh, J. Strachan","doi":"10.1109/ICRC2020.2020.00016","DOIUrl":null,"url":null,"abstract":"There is an intense search for supplements to digital computer processors to solve computationally hard problems, such as gene sequencing. Quantum computing has gained popularity in this search, which exploits quantum tunneling to achieve adiabatic annealing. However, quantum annealing requires very low temperatures and precise control, which lead to unreasonably high costs. Here we show via simulations, alongside experimental instantiations, that computational advantages qualitatively similar to those gained by quantum annealing can be achieved at room temperature in classical systems by using a memristor Hopfield neural network to solve computationally hard problems.","PeriodicalId":320580,"journal":{"name":"2020 International Conference on Rebooting Computing (ICRC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC2020.2020.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

There is an intense search for supplements to digital computer processors to solve computationally hard problems, such as gene sequencing. Quantum computing has gained popularity in this search, which exploits quantum tunneling to achieve adiabatic annealing. However, quantum annealing requires very low temperatures and precise control, which lead to unreasonably high costs. Here we show via simulations, alongside experimental instantiations, that computational advantages qualitatively similar to those gained by quantum annealing can be achieved at room temperature in classical systems by using a memristor Hopfield neural network to solve computationally hard problems.
记忆电阻器Hopfield神经网络组合优化的经典绝热退火
人们正在积极寻找数字计算机处理器的补充,以解决诸如基因测序等计算难题。量子计算在这项研究中得到了普及,它利用量子隧道来实现绝热退火。然而,量子退火需要非常低的温度和精确的控制,这导致了不合理的高成本。在这里,我们通过模拟和实验实例表明,通过使用忆阻器Hopfield神经网络来解决计算难题,可以在室温下在经典系统中实现与量子退火获得的计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信