Nearest Neighbor outperforms Kernel-Kernel Methods for Distribution Regression

Ilqar Ramazanli
{"title":"Nearest Neighbor outperforms Kernel-Kernel Methods for Distribution Regression","authors":"Ilqar Ramazanli","doi":"10.1109/CACML55074.2022.00009","DOIUrl":null,"url":null,"abstract":"We study the distribution regression problem assuming the distribution of distributions has a doubling measure larger than one. First, we explore the geometry of any distributions that has doubling measure larger than one and build a small theory around it. Then, we show how to utilize this theory to find one of the nearest distributions adaptively and compute the regression value based on these distributions. Finally, we provide the accuracy of the suggested method here and provide the theoretical analysis for it.","PeriodicalId":137505,"journal":{"name":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACML55074.2022.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the distribution regression problem assuming the distribution of distributions has a doubling measure larger than one. First, we explore the geometry of any distributions that has doubling measure larger than one and build a small theory around it. Then, we show how to utilize this theory to find one of the nearest distributions adaptively and compute the regression value based on these distributions. Finally, we provide the accuracy of the suggested method here and provide the theoretical analysis for it.
最近邻优于核-核分布回归方法
我们研究了分布回归问题,假设分布的分布具有大于1的加倍测度。首先,我们探索任何加倍测量大于1的分布的几何形状,并围绕它建立一个小理论。然后,我们展示了如何利用这一理论自适应地找到最近的分布之一,并根据这些分布计算回归值。最后,给出了本文所提方法的准确性,并对其进行了理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信